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This paper presents an intuitive approach to analyzing quasi-static feedback circuits. This approach 
involves decomposing feedback amplifiers into flow-graph diagrams, rather than applying 2-port theory, 
which is shown to be useless for analyzing many feedback amplifiers. Using the feedback analysis, we 
derive methods for determining the gain, input resistance, and output resistance of a feedback amplifier, 
then work out various examples for applying feedback theory, ranging in complexity from a simple 
resistive divider to a complex multiple-loop feedback amplifier. 
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1. Introduction 
Feedback theory is one of the more difficult facets of circuit analysis for which to develop an intuitive 
understanding. A firm grasp of feedback analysis requires a grounding in circuit analysis techniques as a 
foundation, to include Kirchhoff’s voltage and current laws, current and voltage divider equations, 
superposition, Thévenin and Norton equivalent circuits, and transistor gain equations, to name a few. 
Feedback analysis is usually applied to circuits which contain active components, such as transistors or 
operational amplifiers, although we will show that feedback analysis can be applied to purely passive 
resistive networks as well. Feedback theory provides insights into circuit behavior which are not as visible 
using lower-level circuit analysis. 

The main difficulty when it comes to applying feedback theory to a circuit is to understand how to 
decompose a circuit using flow-graph diagrams. This involves identifying current and voltage nodes in a 
circuit and determining how those nodes interact. Another challenge is to understand how feedback has an 
effect in the input and output resistance of an amplifier. In this paper, we will begin by going over how to 
construct and understand flow-graph diagrams, and learn how they are useful for understanding circuits 
from a feedback perspective. We will work through several examples of feedback circuits starting with 
resistive dividers and work towards harder multiple-feedback examples. By doing so, we will attempt to 
develop an intuitive understanding of feedback circuits. We will analyze only quasi-static circuits, 
meaning that we will ignore all dynamic circuit elements such as inductors and capacitors. 

A study of 2-port network theory is useful for gaining some of the intuition needed behind finding input 
and output resistances, and for using the amplifiers as discrete units. Most text books use 2-port network 
theory quite heavily, which has a tendency of making feedback analysis a bit more complicated than 
necessary. In this paper, we will use mainly flow-graph diagrams in our feedback and touch only 
minimally on 2-port network theory. 
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2. Flow-graph Diagrams 
To express a feedback system, we will use what are known as flow-graph diagrams. The flow-graph 
diagram is useful, since it provides insight into how various circuit quantities relate with each other in a 
system. A flow-graph diagram for a typical single-path feedback amplifier is shown below. 

 

Figure 2.1. Flow-graph for typical single-loop feedback amplifier 

The flow-graph diagram can also be expressed as a block diagram, which is typically used in signal 
processing diagrams. An equivalent block diagram is shown in Figure 2.2. 

 

Figure 2.2. Block diagram for typical single-loop feedback amplifier 

The block diagram, although much more commonly used, is not as easy to draw for more complicated 
systems as the flow-graph diagram. We will therefore use the flow-graph feedback representation for the 
remainder of this paper. 

In Figure 2.1, we see a flow-graph comprised of nodes (circles) connected to each other through paths 
(arrows). Each path begins at an origin node and ends at a destination node and is labeled with the path 
gain. A path is a feedback path if it has a destination node closer to the input node than the origin node, 
which includes the H path in our example. The nodes are labeled by the node quantities, which begin 
with the letter x and represent either a voltage or current in the amplifier circuit. The paths represent how 
each node affects the other nodes in the system. The node xE for instance is affected by nodes xin by the 
path gain Ti and xf by the path gain -H. For each node, we can derive an algebraic equation called the 
node path equation, which is the sum of the products of the node quantities and path gains which lead to 
each node. The node path equations for the system in Figure 2.1 are as follows: 

 iT HE in fx x x= −  (2.1) 

 Gf Ex x=  (2.2) 

 oTout fv x=  (2.3) 

By solving the system of equations given by the node path equations, we can solve for all the node gain 
equations in our system. The node gain equations state the ratio of any node quantity to the input node 
quantity. 

 iT
1 G H

E

in

x
x

=
+  

(2.4) 



4 

 

 iT G
1 G H

f

in

x
x

=
+  

(2.5) 

 i oT T G
1 G H

out

in

x
x

=
+  

(2.6) 

The node gain equations all have a denominator of 1 + G H. The product G H is called the loop gain. The 
closed-loop gain is the total gain for the system, which is given in equation (2.6).The numerator of the 
closed-loop gain, Ti To G, is the open-loop gain of the system, or the gain of the system after nulling the 
feedback paths. 

In the block diagram representation of the feedback system, two extra signals appear: xR and xB. These 
signals are realized in the following flow-graph diagram. These two nodes do not usually have realizable 
counterparts in electrical circuits, although they will become helpful later for developing insights about 
feedback systems. 

 

Figure 2.3. Flow-graph for single-loop feedback amplifier 

The quantity xin represents the input voltage or current into the system. The error node, xE, is the node to 
which feedback is applied. The quantity xR represents the reference quantity or the open-loop error 
quantity. This is the quantity at the error node if the feedback path is nulled. The quantity xB is the open-
loop feedback quantity. The nodes xR and xB add together to produce the error quantity, xE. The quantity 
xf is the current or voltage which is fed back to the error node. Finally, the node xout is the voltage or 
current at the output of the system. 
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3. 2-port Feedback Network Theory 
Understanding 2-port theory is useful for gaining some of the insights behind feedback analysis. 
Feedback loops generally fall into four topologies: series-series (voltage in, voltage out), series-shunt 
(voltage in, current out), shunt-series (current in, voltage out), and shunt-shunt (current in, current out). 
Commonly, g (shunt-series), h (series-shunt), y (shunt-shunt), and z (series-series) parameters are used to 
describe the gains and resistances in the two port models, although with our brief overview of 2-port 
networks, we will avoid discussing these parameters in any detail. 

 

Figure 3.1. Four feedback network topologies: series-series (top left), series-shunt (top 
right), shunt-series (bottom left), and shunt-shunt (bottom right). 

To apply 2-port feedback theory, we first decompose a feedback loop into two 2-port blocks, including an 
open-loop amplifier and a feedback network. Each 2-port block consists of two sources with a certain 
output resistance, one on the error side (left), and the other on the feedback side (right). In many cases, 
the dependent sources on the error side of the open-loop amplifier and on the feedback side are 
approximated to be zero. The source on the error side of each 2-port block is dependent on either iF or vF, 
either of which may be selected as the feedback nodes, and the source on the feedback side of each block 
is dependent on iE or vE, either of which may be selected as the error nodes. For series connections, it is 
more common select the current iE or iF as the node, and for a shunt connections, it is more common to 
select the voltage vE or vF as the node. When selecting as your node a voltage for the shunt connection or 
a current for the series connection, the dependent source inside the port across the voltage or through 
which the current flows has to be assumed zero. 

Although 2-port feedback theory can provide us with insights into feedback theory, it has a tendency to 
overcomplicate the analysis, and it can often be impossible to decompose a feedback circuit into one of 
the four circuit topologies, especially in the case of the series-shunt or shunt-shunt topologies. For 
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instance, consider the transconductance amplifier in Figure 3.21, consisting of a non-inverting op-amp 
configuration with discrete BJT output stage. 

 

Figure 3.2. Transconductance amplifier 

An erroneous attempt at fitting the transconductance amplifier in Figure 3.2 into the mold of the shunt-
shunt feedback configuration will produce the following 2-port model. 

 

Figure 3.3. Erroneous application of 2-port series-series feedback theory 

In Figure 3.3, the open-loop amplifier is chosen as the op-amp with the BJT output, and the feedback 
amplifier is chosen as the emitter resistor. It would appear at first that 2-port theory applies nicely in this 
situation. But since the currents into the collector and out of the emitter of the transistor are different, the 
2-port model in Figure 3.3 breaks down. The 2-port model will work only if the current gain and ro for the 
transistor are infinite; otherwise, the calculated output resistance of the open-loop amplifier will come out 
to be much higher than in the actual circuit. It turns out the circuit in Figure 3.2 will not fit into one of the 
2-port molds unless the circuit is heavily modified. 

                                                      
1 Taken from Jaegar & Blalock, page 1092 
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4. Identifying Feedback Nodes and Calculating Path Gains 
The first step in applying feedback analysis to a feedback amplifier is to identify the feedback nodes and 
paths. This non-trivial task often requires a fair amount of circuit intuition. The goal for choosing the right 
nodes is to select an appropriate number of nodes for which the equations for the path gains between the 
nodes are fairly simple. In some circuits, the selection of nodes is obvious, while in other applications, 
there are multiple ways of selecting the nodes. It is generally easier to choose more nodes than necessary; 
then after drawing out a flow-graph diagram with the selected nodes, it is often easy to see which nodes 
are not really necessary and can be eliminated. Flow-graph reduction techniques can be then used to 
eliminate unnecessary nodes. Selecting too few or the incorrect feedback nodes will produce overly 
complicated node gain equations. 

To begin, identify the nodes (voltages or currents) which seem to produce the most straight-forward 
paths. To do this, start with the input node, and take note of which of the other nodes are affected if the 
input node were to change in value. Then choose the node which seems to be most directly affected by 
changing the input quantity. Then repeat the process with the selected node, and continue until enough 
nodes are selected. 

Next, identify the paths. To do this, we start with the input signal, xin, and observe what effects a change 
on the value of this signal will have on other node quantities in the circuit. For a path to exist from node 
xa to node xb, changing node xa will affect node xb even when all of the other selected feedback nodes (xc, 
xd, xe…) are set to zero. Keep in mind that no paths should lead to the input node since it is an ideal 
voltage or current source. During this process, it is helpful to construct a flow-graph diagram. 

Finally, calculate the path gains. To calculate the gain of the path N from xa to xb, null all paths except for 
N which lead to the destination node xb, and then determine the relation between xa and xb using circuit 
analysis techniques. If the relation between xa and xb is not simple, more nodes may need to be selected. 
To null a path, set the origin node quantity for the path to zero. Sometimes, multiple paths exist from xa to 
xb, in which case each path gain can be determined separately while the other paths are nulled, and then 
the individual path gains are added together to find the total path gain. 
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5. Input and Output Resistance Calculations for Feedback Circuits 
As a result of feedback, the input and output resistance for amplifiers is affected. We can understand the 
resistance at a ground-referenced voltage node vout by placing a test resistor Rload between the node and 
ground (see Figure 5.1). As a result of adding the resistor Rload, the voltage at the output node will drop 
from vout by the amount ∆vout. The resistance at the node is therefore 

 out
out load

out out

vR R
v v

 ∆
=  − ∆   

(5.1) 

In a special case when ∆vout is half of vout, we know that Rin and Rload are equal. 

 

 

Figure 5.1. Test for resistance at a voltage node. 

Similarly, we can understand the resistance along a path iout by placing a test resistor across the resistance 
being measured (see Figure 5.2). As a result of adding the resistor Rload, the current through the output 
path will drop from iout by the amount ∆iout. The resistance along the output path is therefore 

 out
out load

out out

iR R
i i

 ∆
=  − ∆   

(5.2) 

In a special case when ∆iout is half of iout, we know that Rin and Rload are equal. 

 

Figure 5.2. Test for resistance along a current path 

When finding the input or output resistance of a circuit with feedback, we first need to know whether the 
node uses series or shunt feedback. Knowing this, we can then redraw the circuit as one of the following 
two circuits. 
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Figure 5.3. Test circuits for determining input resistance for series feedback (left) and 
shunt feedback (right) 

Both of these diagrams are simplified circuit realizations of a single-loop feedback system (see Figure 
2.3), one for a series connection (left) and the other for a shunt connection (right). Consider the series 
feedback circuit on the left. From the flow-graph diagram in Figure 2.3, we see that vE = vR + vB, and 
vB = -G H vE. Also, we can see that the resistance seen by the vR source is vR / iE. Therefore:  

 
( ) ( )1 G H

1 G HER E B
in E

E E E

vv v vR R
i i i

+−
= = = = +

 
(5.3) 

From this result, we see that if there is a series feedback connection at the selected error or feedback node, 
we can find the resistance along the path of the node if we zero the voltage vB and calculate the open-loop 
resistance RE. After finding the open-loop resistance, we can calculate the effective resistance seen along 
the path when feedback is applied by multiplying RE by 1 + G H. 

Similarly, for the circuit on the right, we find iE = iR + iB, and from the flow-graph diagram, we see 
iB = -G H iE. We can also see that the resistance seen by the iR source is vE / iR. Therefore: 

 ( )1 G H 1 G H
E E E E

in
R E B E

v v v RR
i i i i

= = = =
− + +  

(5.4) 

From this result, we find that if there is a shunt connection at the selected error or feedback node, we can 
find the effective resistance looking into the node if we zero the current iB and calculate the open-loop 
resistance RE. After finding the open-loop resistance, we can calculate the effective resistance seen 
looking into the node when feedback is applied by dividing RE by 1 + G H. 

For all practical purposes, amplifiers are designed to be driven with a current or voltage source with finite 
output resistance, RS, and are designed to drive a finite load with resistance RL. When using equations 
(5.3) and (5.4) to find the input resistance into the input of a feedback node, it is generally useful to 
remove RS or RL before calculating the resistance looking into the node. When calculating the input 
resistance, we first remove the source resistor, and when calculating the output resistance, we first remove 
the load resistor. When the source or load circuitry is disconnected, this usually impacts the path gains in 
the circuit, so they would first need to be recalculated in the modified circuit before we could apply 
equations (5.3) and (5.4) to find the closed-loop resistance. Also, it is important to keep in mind that in 
most cases, the value of the source resistance is dependent on the load resistance, and vice versa. 
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If a voltage source with source resistance RS drives a voltage error node vE in a feedback loop, the input 
resistance can be found using ohm’s law by dividing the source voltage by the source current. The source 
current is found by dividing the voltage drop across the source resistor by the source resistance RS. 

 

Figure 5.4. Test for input resistance using source and error voltages 

 i i

1 G H
T 1 G H T1 1

1 G H

S S S S S
in S

Ein S E

S

v v R R RR Rvi v v
v

 +
= = = = =  − + − − −

+  

(5.5) 

To find the value of RE only, we simply subtract the source resistance from the input resistance. 

  i

i i

T1 G H 1
1 G H T 1 G H TE in S S SR R R R R
   +

= − = − =   + − + −     
(5.6) 

The same method can be used if a current source with resistance RS drives a current error node iE in a 
feedback loop. The input resistance can once again be found using ohm’s law. The source voltage is 
found by multiplying the difference between the source current and error current by the source resistance. 

 

Figure 5.5. Test for input resistance using source and error currents 

  
( ) i iT 1 G H T1 1

1 G H 1 G H
S S Ein E

in S S S
S S S

R i iv iR R R R
i i i

−      + −
= = = − = − =     + +      

(5.7) 

To find the value of RE only, we first realize that Rin is RS and RE in parallel. Then, solving for RE: 

  

2 i

i

ii

1 G H T
1 G H 1 G H T

1 G H T1 G H T1
1 G H

S
S in

E S
S in

S

R
R RR R

R R
R

 + −
   + + − = = =  − + + + −  − +   

(5.8) 
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In some cases such as the audio preamplifier circuit in section 10, there are nested feedback loops inside 
the main feedback loop. In these cases, finding the open-loop resistance into the circuit requires first 
finding the closed-loop resistance of intermediary feedback loops. The loop gain of the whole feedback 
can be found by reducing the flow-graph diagram to an equivalent single-path feedback loop, similar to 
Figure 2.1. 
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6. Resistive Divider Example 
For our first example of a feedback system, we will analyze a voltage divider circuit consisting of three 
resistors, as shown in Figure 6.1. It may not be obvious at first, but the resistive voltage divider is the 
simplest examples of a feedback amplifier. We will apply the principles discussed in sections 4 and 5 to 
analyze the resistive network from a feedback perspective. Using feedback analysis on such a simple 
circuit is generally considered complete overkill, since any first-quarter electrical engineering student 
would be able to tell you immediately what the gain, input resistance, and output resistance of the above 
circuit on observation. Evaluating the circuit using feedback analysis will assist in gaining many of the 
critical insights required in feedback analysis. 

 

Figure 6.1. Resistive divider amplifier 

To begin, we will choose vin, vE, and vout as the feedback nodes. Next, we identify the paths between the 
nodes. For a path to exist from vin to vE, changing vin will also cause vE to change when vout is grounded. 
And it can be easily seen that when vout is grounded, vE is still controlled by vin, so a path exists from vin to 
vE. However, no path exists from vin to vout, since when the node vE is grounded, vout no longer changes 
with vin. Using the same criteria, we can also see that paths exist from vE to vout and from vout to vE. We can 
now draw the following flow-graph of our system. 

 

Figure 6.2. Flow-graph for resistive divider circuit 

From this flow-graph, we see the following node path equations. 

 iT HE in outv v v= −  (6.1) 

 Gout Ev v=  (6.2) 

From the node path equations, we can solve for the node gain equations. 

 iT
1 G H

E

in

v
v

=
+  

(6.3) 

 iT G
1 G H

out

in

v
v

=
+  

(6.4) 
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The next step is to calculate the path gains. To calculate the path gain Ti, we first null all the other paths 
which lead to vin, which includes the H path. To null the H path, we set the origin node for the H path, vL, 
to zero. After doing this, we are left with a simple resistive divider. 

  2
i

1 2H null

T E

in

v R
v R R

= =
+  

(6.5) 

To find the path gain G, we notice that vout is the output of a simple 2-resistor resistive divider with input 
vE. 

  3

2 3
G out

E

v R
v R R

= =
+  

(6.6) 

Finally, to find the path gain H, we have to first null the Ti path. We do this by setting vin to zero. After 
doing this, we are yet again left with a simple resistive divider circuit.  

  
i

1

1 2T  null

H E

out

v R
v R R

= − = −
+  

(6.7) 

Finally, we plug the path gain equations into the node gain equations. After simplification, the node gain 
equations match the expected results after simply applying the voltage divider equations to the system. 

 

2

2 31 2

1 2 33 1

2 3 1 2
1

E

in

R
R Rv R R

v R R RR R
R R R R

++
= =

+ +  
+ −  + +    

(6.8) 

 

32

1 2 2 3 3

1 2 33 1

2 3 1 2
1

out

in

RR
R R R Rv R

v R R RR R
R R R R

  
  + +  = =

+ +  
+ −  + +    

(6.9) 

To complete the 2-port model of the system, we need to know the input and output resistance for the 
circuit. Using the loop gain, G H, we can determine the resistance looking into the vE and vout nodes. To 
find the resistance looking into the node vE, we first null all paths which have as their destination node vE, 
which includes the Ti and H paths. To do this, we set the nodes vin and vout to zero. Next, we find the 
open-loop resistance looking into the node, which is R1 || R2. Finally, we divide the open-loop resistance 
by one plus the loop gain, or 1 + G H. 

  
( ) ( )

1 2

1 2 31 2 1 2
1 2 3

1 2 33 1

2 3 2 1

1 G H
1

E

R R
R R RR R R RR R R R
R R RR R

R R R R

++
= = = = +

+ + +  
+ −  + +  





 

(6.10) 

It is more useful for us to find the resistance looking into the input port of the amplifier. To do this, we 
can do one of two things. One option is to find the limit of the error node input resistance in equation 
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(6.10) as R1 goes to infinity, then add R1 to the results. The other option is to use equation (5.5), using 
RS = R1. 

 

3 1

2 3 1 2
1 1

i 3 1 2

2 3 1 2 1 2

1
1 G H

1 G H T
1

in

R R
R R R R

R R R
R R R

R R R R R R

  
+ −  + + +   = = ⋅ + −     + − −  + + +    

(6.11) 

 1 2 3inR R R R→ = + +  (6.12) 

To find the output resistance looking into the node vout, we first null the G path by setting vin to zero. We 
end up with an open-loop output resistance of R2 || R3. Using equation (5.4), we then divide this value by 
1 + G H. 

  
( ) ( )

2 3

3 1 22 3 2 3
1 2 3

1 2 33 1

2 3 2 1

1 G H
1

out

R R
R R RR R R RR R R R
R R RR R

R R R R

++
= = = = +

+ + +  
+ −  + +  



  (6.13) 

In this example, we turned a very simple problem into a complicated one by using feedback analysis. For 
more complicated feedback systems, the use of feedback analysis can go a long way to providing insights 
into feedback systems. 
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7. Inverting Amplifier Example 
In this example, we will analyze an inverting amplifier with an ideal op-amp with finite gain K. 

 

Figure 7.1. Inverting op-amp circuit 

To begin, we will select for our nodes vin, vE, and vout. We can find node path equations for vE and vout by 
superposition: 

 
f i

E in out
f i f i

R Rv v v
R R R R

= ⋅ + ⋅
+ +

 
(7.1) 

 Kout Ev v= −  (7.2) 

A flow-graph of the finite-gain inverting amplifier can be constructed from these two equations, which is 
depicted in Figure 7.2. 

 

Figure 7.2. Flow-graph for finite-gain inverting amplifier 

Our system therefore has the same form as the typical single-path amplifier depicted in Figure 2.1 if we 
choose for our nodes xin = vin, xout = xf = vout, and xE = vE. The path gains are therefore Ti = Rf / (Rf + Ri), 
G = -K, H = -Ri / (Rf + Ri), and To = 1. Solving the node path equations, we produce the node gain 
equations: 

 ( )K 1
fE

in f i

Rv
v R R

=
+ +  

(7.3) 

 ( )
K

K 1
fout

in f i

Rv
v R R

= −
+ +  

(7.4) 

From equation 5b, we see that as K approaches infinity, the gain of the inverting op-amp approaches –
 Rf / Ri, which is the gain of an ideal inverting op-amp circuit. 
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The input resistance of the inverting op-amp is affected by feedback. To find the input resistance of the 
circuit, we can use either of two approaches. The first approach is to find the limit as Ri becomes 
infinitely large of the input resistance looking into the node vE using equation (5.4). We first null the 
feedback path by grounding vout. We then find the open-loop input resistance looking into the node vE, 
which is Ri || Rf. Then, applying equation (5.4), we divide the results by 1 + G H to find the closed-loop 
resistance RE. 

  ( )
( )1 G H K 1

1 K

i f i f f i
E

f ii

f i

R R R R R R
R

R RR
R R

= = =
+ + + 

+ − −  + 

 

 

(7.5) 

The input resistance can be found by finding the limit of equation (7.5) as Ri goes to infinity, then adding 
Ri to the results. 

  ( )lim
K 1i

f
in i E iR

R
R R R R

→∞
= + = +

+  
(7.6) 

The other approach to finding the input resistance is to use equation (5.5), using RS = Ri. 

  

( )

( )i

1 K
1 G H

1 G H T K 1
1 K

i

f i f
in i i i

fi

f i f i

R
R R R

R R R R
RR

R R R R

 
+ − −  + +  = = ⋅ = + + − +   + − − −  + +   

(7.7) 

For this example, we are assuming the op-amp has ideal output resistance; therefore, the output resistance 
for the inverting amplifier is also zero. 
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8. Discrete Component BJT Example 
In this example, we will analyze the following discrete-component BJT amplifier. For this analysis, we 
will assume Q1 and Q2 have the same current gain, β. The amplifier being analyzed is within the dotted 
rectangle, and the resistors RS and RL represent the output resistance of the previous stage and the input 
resistance of the following stage. We will use feedback analysis to determine the paths, and overall 
transresistance of the amplifier. The first step is to determine the DC operating points; although, for this 
example, we will skip the static analysis. 

  

Figure 8.1. Discrete-component BJT feedback amplifier 

For the static analysis, we will use the BJT T-model, and assume that ro is negligible. The resulting quasi-
static model is shown in Figure 8.2. 

 

Figure 8.2. Quasi-static model of discrete-component BJT feedback amplifier 
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To begin, we will identify the feedback nodes. The first two feedback nodes we will select are the input 
and output nodes, iS and vL. Although, it isn’t at all clear which other circuit quantities to choose. Some of 
the possible candidates for feedback nodes are vb1, ib1, vb2, ib2, and vin. It isn’t clear how many of these 
potential feedback nodes we will need to perform the feedback analysis. For this example, we will 
perform an experiment, and choose all of the above listed nodes as feedback nodes. After identifying the 
paths, we come up with the following flow-graph diagram for the system. 

 

Figure 8.3. Flow-graph of discrete-component BJT feedback amplifier 

We see that we can drastically simplify the feedback system. First, we can clearly discard ib2 as a 
feedback node. We can combine paths which lie in series, such as A B and C D F, by discarding the nodes 
separating them (vin, ib1, vb2, and ib2) and multiplying the path gains. Doing this, we can reduce the 
feedback system reduces to the typical single-path feedback amplifier, similar to Figure 2.1, with 
Ti = A B, G1 = C D F, G = G1+ G2, and To = 1. 

 

Figure 8.4. Reduced flow-graph of BJT feedback amplifier 

Next, we calculate the feedback gains. To find the transresistance Ti, we must null the H path by 
grounding vL. At this point, it helps to transform the current source on the input into the Thévenin 
equivalent voltage source with voltage iin Rin and input resistance Rin. We can then find Ti using the 
voltage divider equation. 

  
( )( )

( )( )
1 11

i
1 1H null

1
T

1
f e Eb

S
S S b f e E

R r Rv R
i R R R r R

 β + + = = ⋅
 + + β + + 





 
(8.1) 

Next, we find G, which is vL / vb1. We note that G takes on two separate paths: G1, which goes through the 
transistors; and G2, which goes through Rf. To find the gain G1, we first must null the contribution through 
the G2 path by disconnecting the left led of Rf from the base of Q1 and grounding it. The gain of the 
common-emitter transistor is: 

 
  

( )( )
2

2 22
1

1 1 1G  null

1
G

C e E L fb
a

b e E

R r R R Rv
v r R

 β + + = = −α ⋅
+

  

 
(8.2) 
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The gain of the emitter-follower output stage is: 

 
  

2

2
1

2 2 2G  null

E L fL
b

b e E L f

R R RvG
v r R R R

= =
+

 

 

 
(8.3) 

Therefore, the gain G1 is: 

 
 
  2

1 1 1
1 G  null

G L
a b

b

v G G
v

= =

 
(8.4) 

 

We will now find G2. We do this by nulling the contribution through G1 by disconnecting and grounding 
the base of Q1. Using a voltage divider equation, we can then find G2. 

 
  

( )
( )

1

2 2
2

1 2 2G  null

1
G

1
E L e CL

b f E L e C

R R r Rv
v R R R r R

 + β + = =
 + + β + 

 

 

 
(8.5) 

We can now find the path gain G by adding G1 and G2. Simplifications can be made by assuming the gain 
of the emitter-follower is 1 or ignoring the G2 path, which more than likely is insignificant compared to 
G1.  

To find the H path gain, we must first null the Ti path by setting iin to zero. We can then use a voltage 
divider equation to calculate the path gain. 

 
  

( ) ( )( )
( ) ( )( )

i

1 11

1 1T  null

1
H

1
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L f b S e E

R R r Rv
v R R R r R

 + β + + = − = −
 + + β + + 





 
(8.6) 

Because the path gain equations for our system turned out quite complicated, we won’t even bother to 
find the total transresistance of our amplifier since the equation probably won’t fit on this page. 

To find the input resistance, we can use equation (5.6), although first, we must convert the input source 
into the Thévenin equivalent voltage source. Because of this transformation, Ti gets divided by RS. 

 
  ( )

i

i

T

T1 G H

S
in b S b

S

RR R R R

R

 
 
 = + +
 + − 
   

(8.7) 

The other way of finding the input resistance for single-path feedback amplifiers is to use equation (5.4) 
after letting Rb go to infinity. Setting Rb to infinity causes the path gain H to become: 

 
  

( )( )
( )( )

1 1

1 1

1
H

1b

e E
R

f e E

r R
R r R=∞

β + +
= −

+ β + +  
(8.8) 

To find the open-loop input resistance, disconnect and ground the right led of Rf. 
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To find the output resistance, we can once again use equation (5.4), although we must first null the output 
current by letting RL go to infinity. This changes the path gains G1a, G1b, and G2. After removing the load, 
these path gains become: 

 ( )( )2 2
1

1 1

1
G

L

C e E f
a R

e E

R r R R

r R→∞

 β + + = −α ⋅
+

 

 
(8.9) 

 2
1

2 2
G

L

E f
b R

e E f

R R
r R R→∞ =

+



  
(8.10) 
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1
G

1L

E e C
R

f E e C

R r R

R R r R→∞

 + β + =
 + + β + 



  
(8.11) 

We then find the closed-loop output resistance by finding the open-loop resistance after RL has been 
removed, and applying equation (5.4). 
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(8.12) 
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9. Shunt-feedback Amplifier Example 
A commonly-used feedback amplifier is the shunt-feedback amplifier. This circuit consists of a common-
emitter amplifier with a resistor shunting the base and collector pins. 

   

Figure 9.1. Shunt-feedback Amplifier, static (left) and quasi-static (right) models 

We begin by choosing vS, vb, and vL as nodes. The flow-graph looks as follows: 

 

Figure 9.2. Flow-graph for shunt-feedback amplifier 

We will let rB be the resistance looking into the base of the transistor. Next, we find the path gains. To 
find Ti, we first null the H path by setting vL to zero. 

 
  i

H null

T f B Bb

S S f B B

R R rv
v R R R r

= =
+

 

   
(9.1) 

The G path consists of two different paths, G1 and G2. To find G1, we null G2 by disconnecting and 
grounding the base of the transistor. To find G2, we null the forward path through Rf by disconnecting and 
grounding the bottom led of Rf. Finally, we find the total path gain by adding G1 and G2 together. 
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1
G  null

G C LL

b f C L

R Rv
v R R R

= =
+


  
(9.2) 
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(9.3) 

 
1 2G G G C L fC LL
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(9.4) 

For the H path, we first null the Ti path by grounding vS. 

 
  

iT  null
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L f S B B
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+
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(9.5) 

Finally, we find the input and output resistance. To find the input resistance, we can apply equation (5.6). 
Using this method, the input resistance reduces to: 
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f C L
in S B B

C L

B

R R R
R R R r R R

r

 
 +
 = +
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(9.6) 

For the output resistance, we first remove RL, which affects the G path gain. We then apply equation (5.4). 
The results reduce to: 

 
  1

f S B B
out C

S B B

B

R R R r
R R R R r

r

 
 +
 =
 β ⋅ + 
 

 

 

 

(9.7) 

In equations (9.6) and (9.7), we see an interesting insight on the effects of feedback to the resistance 
looking through the feedback resistor, Rf. In both cases, we end up with equations which divide the open-
loop resistance through the feedback resistor by one plus beta times the ratio of resistance past the 
feedback resistor to the resistance looking into the base of the transistor. 
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10. Multiple Feedback Audio Pre-amplifier Example 
In this example, we will use feedback analysis techniques to evaluate a multiple-feedback circuit2. The 
circuit, seen in Figure 10.1, is an audio pre-amplifier circuit with non-inverting feedback through Rf. The 
circuit consists of two shunt-feedback amplifiers in series. The output of the second shunt-feedback 
amplifier stage feeds back to the emitter of the first stage through a feedback resistor. The output of the 
second stage is buffered by an emitter-follower. 

 

Figure 10.1. Audio Preamplifier with Non-inverting Feedback 

For this analysis, we will use find the quasi-static gain for the above circuit, as well as the input and 
output resistance. For the static analysis, we will assume the circuit is operating at room temperature 
(VT = 25.8 mV), the resistors are all the same type with saturation current, Is, of 15 fA, and current gain, β, 
of 99 A/A. We will also assume a source resistance of RS = 50 Ω and a load resistance of RL = 10 kΩ. 
Using static analysis, we find the operating point parameters for the transistors are re1 = 43.90 Ω, 

                                                      
2 Taken from Feucht, Page 206 
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re2 = 30.95 Ω, and re3 = 14.95 Ω. A quasi-static model of the circuit using the BJT T-model is shown in 
Figure 10.2. 

 

Figure 10.2. Quasi-static model of multiple-path feedback amplifier 

We begin by selecting the feedback nodes in the circuit. For this circuit, we will choose vS, vb1, ib1, vc1, vc2, 
and vL as the nodes. The next step is to identify what the paths in the circuit are. We can see that changing 
vin has a direct affect on the current ib1 and the voltage vc1. We also see that changing ib1 has a direct affect 
on vc1. On first glance, one might be led to believe that a path exists from ib1 to vc2. For such a direct path 
to exist, a change in ib1 would affect ve2 when the nodes vin and vc1 are zeroed; however, zeroing these 
nodes also zeroes ib1, so no such path exists. A path does exist from vin to vc2. After finding all the paths in 
the circuit, we can create a flow-graph of the system, which is shown in Figure 10.3. 
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Figure 10.3. Flow-graph diagram of audio preamplifier 

We will make the following definitions to make the feedback analysis simpler. 

 ( ) ( )1 1 1 3 2 21b e E f b C fr r R R r R R = β + + +   

 
(10.1) 

 ( )( )2 2 21b e Er r R= β + +  (10.2) 

 ( )( )3 3 31b e E Lr r R R= β + +   (10.3) 

To find the path gain A, we null the H path by setting vc1 to zero. 
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(10.4) 

To find the path gain B, we null the K path by setting vc2 to zero, and then apply Ohm’s law. 
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(10.5) 

To find the path gain C, we null the D and J paths by zeroing vb1 and vc2, and then apply Ohm’s law. 
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(10.6) 

To find the path gain D, we null the C and J paths by zeroing ib1 and vc2, and then apply the voltage 
divider equation. 
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(10.7) 

To find E, we have to consider two separate paths from vc1 to vc2, which we will call E1 and E2.  The path 
E1 goes through Q2, and the path E2 goes through Rf2. To find the path gain for one of these paths, the 
contribution of vc2 from the other path must first be nulled. To null E1, the bottom led of resistor Rf2 is 
disconnected from node vc1 and grounded. To null E2, the base of the transistor Q2 is disconnected from 
node vc1 and grounded. The path gain E is the sum of the gains for the two individual paths, E1 + E2. To 
find either path, the F path must be nulled by setting vb1 to zero. The path gain E1 is solved for using the 
transistor gain equation for a common emitter amplifier. The path gain E2 is found using the voltage 
divider equation. 
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 1 2E E E 13.42 V V→ = + = −  (10.10) 

To solve for the path gain F, we null the E path by grounding vc1. In this case, it becomes useful to 
Thévenize a portion of the circuit to make analysis more intuitive. This transformation is shown in Figure 
10.4. The path gain is then found by applying the voltage divider equation. 

 

Figure 10.4. Thévenin transformation used to find path gain F 
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To find the path gain G, we apply the voltage divider equation. 
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To find the path gain H, we null the A and I paths by zeroing vS and ve1, and then apply Ohm’s law. 
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(10.13) 

To find the path gain I, we null the A and H paths by zeroing vS and ib1, and then apply the voltage divider 
equation. 
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To find the path gain J, we null the C and D paths by zeroing vb1 and ib1, and then apply the voltage 
divider equation. 
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To find the path gain K, we null the B path by zeroing vb1. We then Thévenize vc2 using the same 
technique we used for finding the F path gain, then apply Ohm’s law. 
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(10.16) 

For such a complicated feedback system, it is helpful to reduce the flow diagram to a typical single-path 
feedback amplifier. To begin, let’s collapse the ib1 node. 

 

Figure 10.5. Feedback system after collapsing ib1 node 

In the above figure, we see that our feedback system consists of two distinguishable intermediary 
feedback loops. The first loop is the first shunt-feedback stage, consisting of nodes vb1 and vc1. The second 
loop is the second shunt-feedback stage, consisting of nodes vc1 and vc2. When finding the open-loop 
output resistance at the nodes vb1 and vc2 for the entire system, we will first need to calculate the closed-
loop resistance into the intermediate feedback loops. 

We can further reduce the system by removing the node vc1. Doing this, we result in a flow-graph diagram 
of a single-path feedback amplifier similar to the flow-graph in Figure 2.1. 

 

Figure 10.6. Feedback system converted into equivalent single-feedback path model 
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The total gain can be found by using the following equation. 

 
  

i g o

g h

T T T
20.79 V V

1 T T
L

v
S

vA
v

= = =
+  

(10.21) 

The loop gain can be found by Tg Th, or -15.63 mV/V. 

The simplest method for finding the input resistance is to use equation (5.6). 
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The other approach to finding the input resistance involves using equation (5.4). To do this, we must first 
find the open-loop resistance. Caution must be taken when computing the open-loop input and output 
resistance because of intermediary feedback loops in the system. To find the input resistance, we begin by 
grounding the node vc2. Looking at vc2, we see a closed-loop shunt-feedback amplifier with Q1. We can 
therefore apply equation (9.6) to find the open-loop input resistance of the feedback loop. 
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 , 2.217 kin olR→ = Ω  (10.24) 

The next step is to divide the open-loop resistance by one plus the loop gain, or 1 + Tg Th.. Since we want 
to eliminate the effect of RS on the input resistance, we must first recalculate the path gains H and I so that 
RS is infinitely large. This in turn changes Th, so the overall loop gain of the system changes. 
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The loop gain of the system with RS removed is therefore -708.5 mV/V. 
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Another way of finding the input resistance is by noticing in Figure 10.5 that the nodes vb1 and vc1 form a 
feedback loop. We can find the closed-loop input resistance of this loop by first finding the open-loop 
resistance by zeroing the node vc1, then dividing that quantity by one plus the loop gain of the loop. 
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Finally, the results in equation (10.31) are divided by 1 + Tg Th to find the closed-loop input resistance. 
Similarly, when finding the output resistance, we are faced with a challenge of looking back into a 
complicated feedback loop. Because the K path is not cancelled after grounding the error node vb1, the 
circuit topology does not exactly match the shunt-feedback amplifier in Figure 9.1, so equation (9.7) will 
not help us find the output resistance. However, we have already determined the loop gain of the shunt-
feedback amplifier with Q2, which is -E (J + C K). This is apparent in Figure 10.5. To begin, we will 
remove the emitter-follower stage from the circuit by letting ib3 be 0. The following path gains are 
affected by removing the output stage. 
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The loop gain of the entire system with the emitter-follower stage removed, Tg Th, is therefore -
15.63 mV/V, and the loop gain of the feedback amplifier with Q2 is 16.35 V/V. The open-loop resistance 
looking into the node vc2 with the emitter follower stage removed is therefore given in equation (10.36). 
We then find the closed-loop output resistance by dividing by the loop gain Tg Th. 
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Finally, we calculate the output resistance looking into the emitter of the common collector stage after 
first removing RL. 
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 + = + = Ω 
 β + + + +   

  

 

(10.38) 

11. Conclusion 
In this paper, we discussed various techniques for analyzing feedback circuits. We saw how feedback 
theory can apply for simple circuits including only resistive elements as well as more complicated ones 
with discrete BJT transistors and multiple feedback paths. We saw what effects the loop gain had on the 
input and output resistance of circuits. The core concepts discussed in this paper can be carried further, 
and be used to evaluate the stability and bandwidth of circuits with reactive components such as inductors 
and capacitors. 
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