INNOVATIA LABORATORIES

Feedback Theory

An introduction to quasi-static feedback analysis

Jonathan Feucht
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This paper presents an intuitive approach to analyzing quasi-static feedback circuits. This approach
involves decomposing feedback amplifiers into flow-graph diagrams, rather than applying 2-port theory,
which is shown to be useless for analyzing many feedback amplifiers. Using the feedback analysis, we
derive methods for determining the gain, input resistance, and output resistance of a feedback amplifier,
then work out various examples for applying feedback theory, ranging in complexity from a simple
resistive divider to a complex multiple-loop feedback amplifier.
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1. Introduction

Feedback theory is one of the more difficult facets of circuit analysis for which to develop an intuitive
understanding. A firm grasp of feedback analysis requires a grounding in circuit analysis techniques as a
foundation, to include Kirchhoff’s voltage and current laws, current and voltage divider equations,
superposition, Thévenin and Norton equivalent circuits, and transistor gain equations, to name a few.
Feedback analysis is usually applied to circuits which contain active components, such as transistors or
operational amplifiers, although we will show that feedback analysis can be applied to purely passive
resistive networks as well. Feedback theory provides insights into circuit behavior which are not as visible
using lower-level circuit analysis.

The main difficulty when it comes to applying feedback theory to a circuit is to understand how to
decompose a circuit using flow-graph diagrams. This involves identifying current and voltage nodes in a
circuit and determining how those nodes interact. Another challenge is to understand how feedback has an
effect in the input and output resistance of an amplifier. In this paper, we will begin by going over how to
construct and understand flow-graph diagrams, and learn how they are useful for understanding circuits
from a feedback perspective. We will work through several examples of feedback circuits starting with
resistive dividers and work towards harder multiple-feedback examples. By doing so, we will attempt to
develop an intuitive understanding of feedback circuits. We will analyze only quasi-static circuits,
meaning that we will ignore all dynamic circuit elements such as inductors and capacitors.

A study of 2-port network theory is useful for gaining some of the intuition needed behind finding input
and output resistances, and for using the amplifiers as discrete units. Most text books use 2-port network
theory quite heavily, which has a tendency of making feedback analysis a bit more complicated than
necessary. In this paper, we will use mainly flow-graph diagrams in our feedback and touch only
minimally on 2-port network theory.



2. Flow-graph Diagrams

To express a feedback system, we will use what are known as flow-graph diagrams. The flow-graph
diagram is useful, since it provides insight into how various circuit quantities relate with each other in a
system. A flow-graph diagram for a typical single-path feedback amplifier is shown below.
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Figure 2.1. Flow-graph for typical single-loop feedback amplifier

The flow-graph diagram can also be expressed as a block diagram, which is typically used in signal
processing diagrams. An equivalent block diagram is shown in Figure 2.2.

Figure 2.2. Block diagram for typical single-loop feedback amplifier

The block diagram, although much more commonly used, is not as easy to draw for more complicated
systems as the flow-graph diagram. We will therefore use the flow-graph feedback representation for the
remainder of this paper.

In Figure 2.1, we see a flow-graph comprised of nodes (circles) connected to each other through paths
(arrows). Each path begins at an origin node and ends at a destination node and is labeled with the path
gain. A path is a feedback path if it has a destination node closer to the input node than the origin node,
which includes the H path in our example. The nodes are labeled by the node quantities, which begin
with the letter x and represent either a voltage or current in the amplifier circuit. The paths represent how
each node affects the other nodes in the system. The node x, for instance is affected by nodes x;, by the
path gain T; and x, by the path gain -H. For each node, we can derive an algebraic equation called the
node path equation, which is the sum of the products of the node quantities and path gains which lead to
each node. The node path equations for the system in Figure 2.1 are as follows:

xp =T x;, —Hx, 2.1
x;=Guxg 2.2)
Vout = To xf (2-3)

By solving the system of equations given by the node path equations, we can solve for all the node gain
equations in our system. The node gain equations state the ratio of any node quantity to the input node
quantity.
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The node gain equations all have a denominator of 1 + G H. The product G H is called the loop gain. The
closed-loop gain is the total gain for the system, which is given in equation (2.6).The numerator of the
closed-loop gain, T; T, G, is the open-loop gain of the system, or the gain of the system after nulling the
feedback paths.

In the block diagram representation of the feedback system, two extra signals appear: xz and xz. These
signals are realized in the following flow-graph diagram. These two nodes do not usually have realizable
counterparts in electrical circuits, although they will become helpful later for developing insights about
feedback systems.
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Figure 2.3. Flow-graph for single-loop feedback amplifier

The quantity x;, represents the input voltage or current into the system. The error node, xg, is the node to
which feedback is applied. The quantity x; represents the reference quantity or the open-loop error
quantity. This is the quantity at the error node if the feedback path is nulled. The quantity x; is the open-
loop feedback quantity. The nodes xz and x; add together to produce the error quantity, xz. The quantity
xr1is the current or voltage which is fed back to the error node. Finally, the node x,,, is the voltage or
current at the output of the system.



3. 2-port Feedback Network Theory

Understanding 2-port theory is useful for gaining some of the insights behind feedback analysis.
Feedback loops generally fall into four topologies: series-series (voltage in, voltage out), series-shunt
(voltage in, current out), shunt-series (current in, voltage out), and shunt-shunt (current in, current out).
Commonly, g (shunt-series), 4 (series-shunt), y (shunt-shunt), and z (series-series) parameters are used to
describe the gains and resistances in the two port models, although with our brief overview of 2-port
networks, we will avoid discussing these parameters in any detail.
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Figure 3.1. Four feedback network topologies: series-series (top left), series-shunt (top
right), shunt-series (bottom left), and shunt-shunt (bottom right).
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To apply 2-port feedback theory, we first decompose a feedback loop into two 2-port blocks, including an
open-loop amplifier and a feedback network. Each 2-port block consists of two sources with a certain
output resistance, one on the error side (left), and the other on the feedback side (right). In many cases,
the dependent sources on the error side of the open-loop amplifier and on the feedback side are
approximated to be zero. The source on the error side of each 2-port block is dependent on either ir or v,
either of which may be selected as the feedback nodes, and the source on the feedback side of each block
is dependent on i or vg, either of which may be selected as the error nodes. For series connections, it is
more common select the current iz or ir as the node, and for a shunt connections, it is more common to
select the voltage v or vr as the node. When selecting as your node a voltage for the shunt connection or
a current for the series connection, the dependent source inside the port across the voltage or through
which the current flows has to be assumed zero.

Although 2-port feedback theory can provide us with insights into feedback theory, it has a tendency to
overcomplicate the analysis, and it can often be impossible to decompose a feedback circuit into one of
the four circuit topologies, especially in the case of the series-shunt or shunt-shunt topologies. For



instance, consider the transconductance amplifier in Figure 3.2', consisting of a non-inverting op-amp
configuration with discrete BJT output stage.

Figure 3.2. Transconductance amplifier

An erroneous attempt at fitting the transconductance amplifier in Figure 3.2 into the mold of the shunt-
shunt feedback configuration will produce the following 2-port model.
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Figure 3.3. Erroneous application of 2-port series-series feedback theory

In Figure 3.3, the open-loop amplifier is chosen as the op-amp with the BJT output, and the feedback
amplifier is chosen as the emitter resistor. It would appear at first that 2-port theory applies nicely in this
situation. But since the currents into the collector and out of the emitter of the transistor are different, the
2-port model in Figure 3.3 breaks down. The 2-port model will work only if the current gain and r, for the
transistor are infinite; otherwise, the calculated output resistance of the open-loop amplifier will come out
to be much higher than in the actual circuit. It turns out the circuit in Figure 3.2 will not fit into one of the
2-port molds unless the circuit is heavily modified.

' Taken from Jaegar & Blalock, page 1092



4. ldentifying Feedback Nodes and Calculating Path Gains

The first step in applying feedback analysis to a feedback amplifier is to identify the feedback nodes and
paths. This non-trivial task often requires a fair amount of circuit intuition. The goal for choosing the right
nodes is to select an appropriate number of nodes for which the equations for the path gains between the
nodes are fairly simple. In some circuits, the selection of nodes is obvious, while in other applications,
there are multiple ways of selecting the nodes. It is generally easier to choose more nodes than necessary;
then after drawing out a flow-graph diagram with the selected nodes, it is often easy to see which nodes
are not really necessary and can be eliminated. Flow-graph reduction techniques can be then used to
eliminate unnecessary nodes. Selecting too few or the incorrect feedback nodes will produce overly
complicated node gain equations.

To begin, identify the nodes (voltages or currents) which seem to produce the most straight-forward
paths. To do this, start with the input node, and take note of which of the other nodes are affected if the
input node were to change in value. Then choose the node which seems to be most directly affected by
changing the input quantity. Then repeat the process with the selected node, and continue until enough
nodes are selected.

Next, identify the paths. To do this, we start with the input signal, x;,, and observe what effects a change
on the value of this signal will have on other node quantities in the circuit. For a path to exist from node
X, to node x,, changing node x, will affect node x, even when all of the other selected feedback nodes (x.,
X4, X....) are set to zero. Keep in mind that no paths should lead to the input node since it is an ideal
voltage or current source. During this process, it is helpful to construct a flow-graph diagram.

Finally, calculate the path gains. To calculate the gain of the path N from x, to x;, null all paths except for
N which lead to the destination node x;,, and then determine the relation between x, and x; using circuit
analysis techniques. If the relation between x, and x; is not simple, more nodes may need to be selected.
To null a path, set the origin node quantity for the path to zero. Sometimes, multiple paths exist from x, to
Xp, in which case each path gain can be determined separately while the other paths are nulled, and then
the individual path gains are added together to find the total path gain.



5. Input and Output Resistance Calculations for Feedback Circuits
As a result of feedback, the input and output resistance for amplifiers is affected. We can understand the
resistance at a ground-referenced voltage node v,,, by placing a test resistor R;,,; between the node and
ground (see Figure 5.1). As a result of adding the resistor R4, the voltage at the output node will drop
from v,,, by the amount Av,,,. The resistance at the node is therefore

Av,,
Rout = Rload ( . j (5.1

Vout — Avout

In a special case when Av,,, is half of v,,,, we know that R, and R,,,, are equal.
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Figure 5.1. Test for resistance at a voltage node.

Similarly, we can understand the resistance along a path i,,, by placing a test resistor across the resistance
being measured (see Figure 5.2). As a result of adding the resistor R4, the current through the output
path will drop from i,,, by the amount Ai,,. The resistance along the output path is therefore

Al
Rout = Rload (—om‘j (5-2)

Tour — Alouz‘

In a special case when Ai,,, is half of i,,,, we know that R;, and R, are equal.
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Figure 5.2. Test for resistance along a current path

When finding the input or output resistance of a circuit with feedback, we first need to know whether the
node uses series or shunt feedback. Knowing this, we can then redraw the circuit as one of the following

two circuits.
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Figure 5.3. Test circuits for determining input resistance for series feedback (left) and
shunt feedback (right)

Both of these diagrams are simplified circuit realizations of a single-loop feedback system (see Figure
2.3), one for a series connection (left) and the other for a shunt connection (right). Consider the series
feedback circuit on the left. From the flow-graph diagram in Figure 2.3, we see that v = vz + v, and
vz = -G H vi. Also, we can see that the resistance seen by the vz source is vy / ig. Therefore:

Rl.nz‘_}—szE__vB=VE(1?LGH)=RE(1+GH) (5.3)

Ig Ig Ig
From this result, we see that if there is a series feedback connection at the selected error or feedback node,
we can find the resistance along the path of the node if we zero the voltage vz and calculate the open-loop
resistance Rg. After finding the open-loop resistance, we can calculate the effective resistance seen along
the path when feedback is applied by multiplying Rz by 1 + G H.

Similarly, for the circuit on the right, we find iz = iz + i, and from the flow-graph diagram, we see
iz =-G H iz. We can also see that the resistance seen by the iR source is v / ig. Therefore:

" ip ig—ip ig(1+GH) 1+GH

(5.4)

From this result, we find that if there is a shunt connection at the selected error or feedback node, we can
find the effective resistance looking into the node if we zero the current iz and calculate the open-loop
resistance Rg. After finding the open-loop resistance, we can calculate the effective resistance seen
looking into the node when feedback is applied by dividing Rz by 1 + G H.

For all practical purposes, amplifiers are designed to be driven with a current or voltage source with finite
output resistance, Rg, and are designed to drive a finite load with resistance R;. When using equations
(5.3) and (5.4) to find the input resistance into the input of a feedback node, it is generally useful to
remove Rg or R; before calculating the resistance looking into the node. When calculating the input
resistance, we first remove the source resistor, and when calculating the output resistance, we first remove
the load resistor. When the source or load circuitry is disconnected, this usually impacts the path gains in
the circuit, so they would first need to be recalculated in the modified circuit before we could apply
equations (5.3) and (5.4) to find the closed-loop resistance. Also, it is important to keep in mind that in
most cases, the value of the source resistance is dependent on the load resistance, and vice versa.
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If a voltage source with source resistance Ry drives a voltage error node v in a feedback loop, the input
resistance can be found using ohm’s law by dividing the source voltage by the source current. The source
current is found by dividing the voltage drop across the source resistor by the source resistance Rs.

Figure 5.4. Test for input resistance using source and error voltages

RS _ v Rg _ Ry _ Ry _ 1+GH
", vs-ve o ve . T ClI+GH-T, (5.5)
Vg 1+GH

To find the value of R; only, we simply subtract the source resistance from the input resistance.

1+GH T,
Ry =Ry, — Ry = Ry| —————~1|=Ry| ———
B Sﬁ+GH—L J St+GH—E] (5.0)

The same method can be used if a current source with resistance Rg drives a current error node ig in a
feedback loop. The input resistance can once again be found using ohm’s law. The source voltage is
found by multiplying the difference between the source current and error current by the source resistance.

R in
|_ Vs
L
i R, R,

Figure 5.5. Test for input resistance using source and error currents

o Rel(ig—i [ T 1 H-T;
i is i 1+GH 1+GH

To find the value of Ry only, we first realize that R,, is Ry and R in parallel. Then, solving for Rg:

E7 Rg-R, o[ 1+GH-T,
§ 1+GH

(1+GH-T,
RgR, U 1+GH 1+GH-T,
= Ry| —r (5.8)

S 15GHT
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In some cases such as the audio preamplifier circuit in section 10, there are nested feedback loops inside
the main feedback loop. In these cases, finding the open-loop resistance into the circuit requires first
finding the closed-loop resistance of intermediary feedback loops. The loop gain of the whole feedback

can be found by reducing the flow-graph diagram to an equivalent single-path feedback loop, similar to
Figure 2.1.
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6. Resistive Divider Example

For our first example of a feedback system, we will analyze a voltage divider circuit consisting of three
resistors, as shown in Figure 6.1. It may not be obvious at first, but the resistive voltage divider is the
simplest examples of a feedback amplifier. We will apply the principles discussed in sections 4 and 5 to
analyze the resistive network from a feedback perspective. Using feedback analysis on such a simple
circuit is generally considered complete overkill, since any first-quarter electrical engineering student
would be able to tell you immediately what the gain, input resistance, and output resistance of the above
circuit on observation. Evaluating the circuit using feedback analysis will assist in gaining many of the
critical insights required in feedback analysis.

2 out

in

Figure 6.1. Resistive divider amplifier

To begin, we will choose v;,, vg, and v,,, as the feedback nodes. Next, we identify the paths between the
nodes. For a path to exist from v;, to vg, changing v;, will also cause vg to change when v,,, is grounded.
And it can be easily seen that when v,,, is grounded, v is still controlled by v;,, so a path exists from v;, to
vg. However, no path exists from v;, to v,,, since when the node v; is grounded, v,,; no longer changes
with v;,. Using the same criteria, we can also see that paths exist from vg to v,,, and from v,,, to v;. We can

now draw the following flow-graph of our system.

Figure 6.2. Flow-graph for resistive divider circuit

From this flow-graph, we see the following node path equations.
VE = Ti Vin — Hvout (6'1)
Voutr = G VE (6'2’)

From the node path equations, we can solve for the node gain equations.

ve T
v, 1+GH (6.3)
M— TIG (64)

v.  1+GH

124
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The next step is to calculate the path gains. To calculate the path gain T;, we first null all the other paths
which lead to v;,, which includes the H path. To null the H path, we set the origin node for the H path, v,,
to zero. After doing this, we are left with a simple resistive divider.

R,

T = VE| _
R +R,

1

6.5)
Vin H null
To find the path gain G, we notice that v,,, is the output of a simple 2-resistor resistive divider with input

VE.
Vout _ R3

G=-tou -3

(6.6)
Finally, to find the path gain H, we have to first null the T; path. We do this by setting v;, to zero. After
doing this, we are yet again left with a simple resistive divider circuit.

R

H=_"E_ _
R +R,

Vout

(6.7)

Ti null

Finally, we plug the path gain equations into the node gain equations. After simplification, the node gain
equations match the expected results after simply applying the voltage divider equations to the system.

R,

Vg R +Ry R+ R
Vi R R ) R +R+R 6.8)
N 3 _ 1 1 2 3

[R2+R3J( R1+R2J
v R +R R, +R R
out — 1 2 2 3 - 3 (6,9)
Vin 14 R, R R +Ry+ Ry

Ry + Ry R +R,

To complete the 2-port model of the system, we need to know the input and output resistance for the
circuit. Using the loop gain, G H, we can determine the resistance looking into the vg and v,,, nodes. To
find the resistance looking into the node vg, we first null all paths which have as their destination node v,
which includes the T; and H paths. To do this, we set the nodes v;, and v, to zero. Next, we find the
open-loop resistance looking into the node, which is R, || R,. Finally, we divide the open-loop resistance
by one plus the loop gain, or 1 + G H.

RiR
2R R +R R/(R,+R
= RllRy 1+ Ak 3)=R1||(R2+Rs) (6.10)
+GH (R ) R | RtR+R '
R2+R3 R2+Rl

It is more useful for us to find the resistance looking into the input port of the amplifier. To do this, we
can do one of two things. One option is to find the limit of the error node input resistance in equation
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(6.10) as R; goes to infinity, then add R, to the results. The other option is to use equation (5.5), using

RS:Rl.
1+GH Ry +R R, +R
=R ———— =R S R (6.11)
1+GH-T, 1+[ R J( R J R,

R+R )\ R+R,) R+R,

=Ry, =R + Ry + Ry (6.12)

To find the output resistance looking into the node v,,,, we first null the G path by setting v;, to zero. We
end up with an open-loop output resistance of R, || R;. Using equation (5.4), we then divide this value by
1+GH.

Ry Ry
R, || R R, +R Ry (R +R
= 2 3 _ 2 3 _ 3(1 2)=(R1+R2)||R3 (6.13)
1+GH Ry R R+ Ry + R,
n —
R2+R3 R2+R1

In this example, we turned a very simple problem into a complicated one by using feedback analysis. For
more complicated feedback systems, the use of feedback analysis can go a long way to providing insights
into feedback systems.
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7. Inverting Amplifier Example

In this example, we will analyze an inverting amplifier with an ideal op-amp with finite gain K.

Figure 7.1. Inverting op-amp circuit

To begin, we will select for our nodes v;,, vg, and v,,,. We can find node path equations for v and v,,, by

superposition:
b =y (7.1)
Rf +R; Rf +R;
vy =—Kvg (7.2)

A flow-graph of the finite-gain inverting amplifier can be constructed from these two equations, which is
depicted in Figure 7.2.

Figure 7.2. Flow-graph for finite-gain inverting amplifier

Our system therefore has the same form as the typical single-path amplifier depicted in Figure 2.1 if we
choose for our nodes X, = Vi, Xour = Xr= Vous, and xz = vg. The path gains are therefore T; = R,/ (R, + R)),
G=-K,H=-R;/ (R + R;), and T, = 1. Solving the node path equations, we produce the node gain

equations:
V_E :—Rf (7 3)
Vi Ry +R;(K+1) )
voul —_ KRf (7 4)
Vi Ry +R(K+1) )

From equation 5b, we see that as K approaches infinity, the gain of the inverting op-amp approaches —
R,/ R;, which is the gain of an ideal inverting op-amp circuit.
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The input resistance of the inverting op-amp is affected by feedback. To find the input resistance of the
circuit, we can use either of two approaches. The first approach is to find the limit as R; becomes
infinitely large of the input resistance looking into the node vy using equation (5.4). We first null the
feedback path by grounding v,,,. We then find the open-loop input resistance looking into the node vg,
which is R; || R Then, applying equation (5.4), we divide the results by 1 + G H to find the closed-loop
resistance Rp.

CRIR,  RIR, R, R

“1+GH ") R, +R(K+1
1+(_K){_R,] 7+ R (K+1) (1.5)
R, +R;

E

The input resistance can be found by finding the limit of equation (7.5) as R; goes to infinity, then adding
R; to the results.

R, =R;+ lim (R;)=R i (7.6)
n ! Ri—o0 E) ! K+1

The other approach to finding the input resistance is to use equation (5.5), using Rs = R..

R
1+(_K)(_R IR] R
1+GH R f
R(mjf* & ) & ke 07
1 1+ (-K)| - |-
R;+R; | R;+R;

For this example, we are assuming the op-amp has ideal output resistance; therefore, the output resistance
for the inverting amplifier is also zero.
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8. Discrete Component BJT Example

In this example, we will analyze the following discrete-component BJT amplifier. For this analysis, we
will assume Q; and O, have the same current gain, f. The amplifier being analyzed is within the dotted
rectangle, and the resistors Rg and R, represent the output resistance of the previous stage and the input
resistance of the following stage. We will use feedback analysis to determine the paths, and overall
transresistance of the amplifier. The first step is to determine the DC operating points; although, for this
example, we will skip the static analysis.

Vi

Figure 8.1. Discrete-component BJT feedback amplifier

For the static analysis, we will use the BJIT T-model, and assume that 7, is negligible. The resulting quasi-
static model is shown in Figure 8.2.

Figure 8.2. Quasi-static model of discrete-component BJT feedback amplifier
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To begin, we will identify the feedback nodes. The first two feedback nodes we will select are the input
and output nodes, ig and v;. Although, it isn’t at all clear which other circuit quantities to choose. Some of
the possible candidates for feedback nodes are vy, ip1, Vo, ip2, and v;,. It isn’t clear how many of these
potential feedback nodes we will need to perform the feedback analysis. For this example, we will
perform an experiment, and choose all of the above listed nodes as feedback nodes. After identifying the
paths, we come up with the following flow-graph diagram for the system.

Figure 8.3. Flow-graph of discrete-component BJT feedback amplifier

We see that we can drastically simplify the feedback system. First, we can clearly discard i, as a
feedback node. We can combine paths which lie in series, such as A B and C D F, by discarding the nodes
separating them (v;,, i1, Vs2, and ipy) and multiplying the path gains. Doing this, we can reduce the
feedback system reduces to the typical single-path feedback amplifier, similar to Figure 2.1, with
T,=AB,G,=CDF,G=G+Gy,and T, = 1.

Ls Ti Vi G Wi

50
e ra 7

—H

Figure 8.4. Reduced flow-graph of BJT feedback amplifier

Next, we calculate the feedback gains. To find the transresistance T;, we must null the H path by
grounding v;. At this point, it helps to transform the current source on the input into the Thévenin
equivalent voltage source with voltage i;, R;, and input resistance R;,. We can then find T; using the
voltage divider equation.

o RA[(B+1)(r + Ry ]
dot o Re+ Ry +RAN[(B+1) (7 + Rey) ]

Next, we find G, which is v; / v,;. We note that G takes on two separate paths: G, which goes through the

Tzﬂ

i

(8.1)

Is

transistors; and G,, which goes through R, To find the gain G,, we first must null the contribution through
the G, path by disconnecting the left led of R, from the base of Q, and grounding it. The gain of the
common-emitter transistor is:

RM[(B+1)(r2 + Rz 1R, I Ry )|
. To + Ry

=—q
G, null

G, =22 8.2)

a
Vb1
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The gain of the emitter-follower output stage is:

Gy =—L . el 1% (8.3)
(1 — = .
Vo2l nun Te2 +Rpy IR IRy
Therefore, the gain G is:
\%
G =—+t =Gy, Gy (8.4)
Vbl G, null

We will now find G,. We do this by nulling the contribution through G, by disconnecting and grounding
the base of Q;. Using a voltage divider equation, we can then find G,.

_ Rep IRy I+ Re/(B+1)]
Gt By tRe2 IRl (72 + Re /(B+1)]

We can now find the path gain G by adding G; and G,. Simplifications can be made by assuming the gain

VL
G2 = —
Vb1

(8.5)

of the emitter-follower is 1 or ignoring the G, path, which more than likely is insignificant compared to
G,.

To find the H path gain, we must first null the T; path by setting #;, to zero. We can then use a voltage
divider equation to calculate the path gain.

H=_ bl __ (Rb+RS)”[(B+1)(’%1+RE1)]
Ve b Ry (R +Rs)||[([3+l)(rel +RE1)]

Because the path gain equations for our system turned out quite complicated, we won’t even bother to

(8.6)

find the total transresistance of our amplifier since the equation probably won’t fit on this page.

To find the input resistance, we can use equation (5.6), although first, we must convert the input source
into the Thévenin equivalent voltage source. Because of this transformation, T; gets divided by Ry.

T
R
R, =R, +(Rs +Ry) T 8.7)
1+GH-—
Ry
The other way of finding the input resistance for single-path feedback amplifiers is to use equation (5.4)

after letting R, go to infinity. Setting R, to infinity causes the path gain H to become:

_ (B+1)(r, +Rpg))
R=>"" R, +(B+1)(r +Rgy)

To find the open-loop input resistance, disconnect and ground the right led of Ry

(8.8)
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To find the output resistance, we can once again use equation (5.4), although we must first null the output
current by letting R; go to infinity. This changes the path gains G1,, G5, and G,. After removing the load,
these path gains become:

Rell[ (B+) (2 + Rz IR, ) |

. (8.9)
Cia |RL e o + R
Ry |l Rf
G __ ey
1b|RLaoo Fr +RE2 || Rf (8-10)
Gl - Rpy [ rey + Re /(B+1)] @.11)
2Ro0 R4 Ry [ g+ Re /(B+1)] .

We then find the closed-loop output resistance by finding the open-loop resistance after R; has been
removed, and applying equation (5.4).

Ry UIRgy [ rea + Re /(B +1) ]
out 1+GH|R S

(8.12)
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9. Shunt-feedback Amplifier Example

A commonly-used feedback amplifier is the shunt-feedback amplifier. This circuit consists of a common-
emitter amplifier with a resistor shunting the base and collector pins.

Figure 9.1. Shunt-feedback Amplifier, static (left) and quasi-static (right) models

We begin by choosing vs, v, and v; as nodes. The flow-graph looks as follows:

vS Ti vb G vL

(e > >

—H

Figure 9.2. Flow-graph for shunt-feedback amplifier

We will let 3 be the resistance looking into the base of the transistor. Next, we find the path gains. To
find T;, we first null the H path by setting v, to zero.

Rf | RB | g

73
Rg+R, || Rgllrg

T~ =

1

9.1)

VS |H null

The G path consists of two different paths, G; and G,. To find G;, we null G, by disconnecting and
grounding the base of the transistor. To find G,, we null the forward path through R,by disconnecting and
grounding the bottom led of R.. Finally, we find the total path gain by adding G, and G, together.

RellR,

YL _
R, +Rc IR,

G, = 9.2)

Vb G2 null
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v Re IR IR

Gy=-L  =p L 9.3)
Vb |Gy null "B

R-||R R\ R; | R,
GZV—L=G1+G2: clfy g RelR 1% 9.4)
v, R, +RcIIR, rg
For the H path, we first null the T; path by grounding vs.

Ho | RsURg ©3)

Vil Rt RsIRp 75

Finally, we find the input and output resistance. To find the input resistance, we can apply equation (5.6).
Using this method, the input resistance reduces to:

Ry +Rc IR,
g RcllF,
s

Ry, =Rs+Rg|lrg 9.6)

1

For the output resistance, we first remove R;, which affects the G path gain. We then apply equation (5.4).
The results reduce to:

R +Rq||Ry || 7,
Rout :RC fR ”SR ||B;, £ (9.7)
B' S BII'B +1

s

In equations (9.6) and (9.7), we see an interesting insight on the effects of feedback to the resistance
looking through the feedback resistor, R.. In both cases, we end up with equations which divide the open-
loop resistance through the feedback resistor by one plus beta times the ratio of resistance past the
feedback resistor to the resistance looking into the base of the transistor.
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10. Multiple Feedback Audio Pre-amplifier Example

In this example, we will use feedback analysis techniques to evaluate a multiple-feedback circuit’. The
circuit, seen in Figure 10.1, is an audio pre-amplifier circuit with non-inverting feedback through R;. The
circuit consists of two shunt-feedback amplifiers in series. The output of the second shunt-feedback
amplifier stage feeds back to the emitter of the first stage through a feedback resistor. The output of the

second stage is buffered by an emitter-follower.

8- O vL
R,
R, 10 kQ
50Q
AN —

Figure 10.1. Audio Preamplifier with Non-inverting Feedback

For this analysis, we will use find the quasi-static gain for the above circuit, as well as the input and
output resistance. For the static analysis, we will assume the circuit is operating at room temperature
(V7= 125.8 mV), the resistors are all the same type with saturation current, /;, of 15 fA, and current gain, £,
of 99 A/A. We will also assume a source resistance of Rg= 50 Q and a load resistance of R; = 10 kQ.
Using static analysis, we find the operating point parameters for the transistors are r,; = 43.90 Q,

? Taken from Feucht, Page 206
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reo=30.95 Q, and r.; = 14.95 Q. A quasi-static model of the circuit using the BJIT T-model is shown in
Figure 10.2.

Figure 10.2. Quasi-static model of multiple-path feedback amplifier

We begin by selecting the feedback nodes in the circuit. For this circuit, we will choose vs, Vi1, ip1, Vei, Vea,
and v; as the nodes. The next step is to identify what the paths in the circuit are. We can see that changing
v, has a direct affect on the current i, and the voltage v.;. We also see that changing i, has a direct affect
on v,;. On first glance, one might be led to believe that a path exists from #,; to v,. For such a direct path
to exist, a change in i,; would affect v, when the nodes v;, and v, are zeroed; however, zeroing these
nodes also zeroes iy, so no such path exists. A path does exist from v;, to v.,. After finding all the paths in
the circuit, we can create a flow-graph of the system, which is shown in Figure 10.3.
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Figure 10.3. Flow-graph diagram of audio preamplifier

We will make the following definitions to make the feedback analysis simpler.

Tp1 :(B+1)|:rel +Rpy | (Rf +13 1 Rey | Ry )] (10.1)
Th2 :(BH)(’”ez +REz) (10.2)
Ty =(B+1)(r3 + Rps 1 Ry ) (10.3)

To find the path gain A, we null the H path by setting v, to zero.

T Il Rpy 1| Ry

A=YoL =
Ry + 1 [| Rpy Il Ry

Vs

=994.5 mV/V (10.4)

H, I null

To find the path gain B, we null the K path by setting v, to zero, and then apply Ohm’s law.

1
- =71.66 pA/vV (10.5)

K null (BH)(rel +Rp i Rf)

To find the path gain C, we null the D and J paths by zeroing v,; and v,,, and then apply Ohm’s law.

_In

Vb1

C:ﬁ

Iy

= _B(Rfl | Rey 1R o 1l 72 I R32)= -376.6 V/mA (10.6)
D, J null
To find the path gain D, we null the C and J paths by zeroing i, and v,,, and then apply the voltage
divider equation.

v ReilIRpp 1152 1 Ry

D= cl
Vb1

=38.04 mV/V (10.7)

cooma Bt Rer IRy 170 1| Ry

To find E, we have to consider two separate paths from v, to v.,, which we will call E, and E,. The path
E, goes through 0,, and the path E, goes through Ry,. To find the path gain for one of these paths, the
contribution of v, from the other path must first be nulled. To null E;, the bottom led of resistor R, is
disconnected from node v, and grounded. To null E,, the base of the transistor O, is disconnected from
node v, and grounded. The path gain E is the sum of the gains for the two individual paths, E; + E,. To
find either path, the F path must be nulled by setting v;; to zero. The path gain E; is solved for using the
transistor gain equation for a common emitter amplifier. The path gain E, is found using the voltage
divider equation.
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Ry IR I\ Ry + Rey [l 7 ) M1 77
E, =22 _ g2 (Ry + B lir ) D 1344 VIV (10.8)
Vel E,, F null Ter T Ry
Ry IR, + Ry 17 )1 7
E, =22 e (R + Bl ) 733 =17.81 mV/V (10.9)
Vel g pout Rp2 T Rea H(Rf +Rp ||”e1)||’”b3

To solve for the path gain F, we null the E path by grounding v,,. In this case, it becomes useful to
Thévenize a portion of the circuit to make analysis more intuitive. This transformation is shown in Figure
10.4. The path gain is then found by applying the voltage divider equation.

Rf+rvl‘ ‘Rm Ve

¢ i[:} -
AAA
) R.|IR,
Figure 10.4. Thévenin transformation used to find path gain F
R R R 7
F=l2|  -_TE call Rya |l 7hs =554.9 mV/V (10.11)
Vin lgpun Tt Y REL R + 7 | Rpyp + Reo || Ryeo 1 73
To find the path gain G, we apply the voltage divider equation.
R R

G=2t o ReslR o968 my/v (10.12)

Ve2 Te3 +RE3 ”RL

To find the path gain H, we null the A and I paths by zeroing vy and v.;, and then apply Ohm’s law.

H=_YeL

. = Rg || Ry, | R;y =49.73 V/V (10.13)
c2

A, I null

To find the path gain I, we null the A and H paths by zeroing vs and i,;, and then apply the voltage divider
equation.

RS ” RBI

I:_VA " ' S
R+ Rg || Rp,

Vel

=—497.3 pA/V (10.14)

A, Hnull

To find the path gain J, we null the C and D paths by zeroing v;; and iy, and then apply the voltage
divider equation.
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Reyl| Rey I Rpy Il
_ 1 Rer 1 R 75 =-38.04 mV/V (10.15)

o Rr2 TRl Rey [1Rgs 117

J=——cL

Ve2

To find the path gain K, we null the B path by zeroing v,;. We then Thévenize v,, using the same
technique we used for finding the F path gain, then apply Ohm’s law.

B null Rf +RE1 (B+1)(rel +Rf ”RE])

For such a complicated feedback system, it is helpful to reduce the flow diagram to a typical single-path

K=_'bL
Ve2

=3.115 pA/V (10.16)

feedback amplifier. To begin, let’s collapse the i,; node.

F

A
“ 1+BH "/ BC+D Ja E MeG

Figure 10.5. Feedback system after collapsing i;; node

In the above figure, we see that our feedback system consists of two distinguishable intermediary
feedback loops. The first loop is the first shunt-feedback stage, consisting of nodes v;; and v,,. The second
loop is the second shunt-feedback stage, consisting of nodes v, and v.,. When finding the open-loop
output resistance at the nodes v, and v, for the entire system, we will first need to calculate the closed-
loop resistance into the intermediate feedback loops.

We can further reduce the system by removing the node v.;. Doing this, we result in a flow-graph diagram
of a single-path feedback amplifier similar to the flow-graph in Figure 2.1.

A E (BC + D) +F
vs T+BH+I(BC+D) Y 1 +E(J+CK) 2 G

~ HK +1(J+CK)
1+BH +1(BC + D)

Figure 10.6. Feedback system converted into equivalent single-feedback path model

Vb1 _ A
~1+BH+I(BC+D)

T =

1

=99.34 mV/V (10.17)
Vs Th null

T =Ye2 zwzzo‘gg V/V (10.18)
£ v, 1+E(J+CK)
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T = HKR+104CK) _ e wv/vV (10.19)
Vorlpon 1 #BH+I(BC+D)

T, = VV—L =G =996.8 mV/V (10.20)
c2

The total gain can be found by using the following equation.

v, TT,T,
A =-L=—""222-2079 V/V (10.21)

ve 1+ ¢ Th
The loop gain can be found by T, Ty, or -15.63 mV/V.

The simplest method for finding the input resistance is to use equation (5.6).

R, =R [H;ﬁ] =7.605 kQ (10.22)
The other approach to finding the input resistance involves using equation (5.4). To do this, we must first
find the open-loop resistance. Caution must be taken when computing the open-loop input and output
resistance because of intermediary feedback loops in the system. To find the input resistance, we begin by
grounding the node v.,. Looking at v.,, we see a closed-loop shunt-feedback amplifier with O,. We can
therefore apply equation (9.6) to find the open-loop input resistance of the feedback loop.

Ry +Rey [ Ry [ Rpy 1757
R R R r
o 1 l1Rpy [ Rp I B2
7+ R “Rf

Rino1 = Rp1 || [(B+ D)(rer + Ry || Ry )} (10.23)

—> Ry, 1 =2.217 kQ (10.24)

The next step is to divide the open-loop resistance by one plus the loop gain, or 1 + T, T},. Since we want
to eliminate the effect of Rg on the input resistance, we must first recalculate the path gains H and I so that
Ry is infinitely large. This in turn changes T}, so the overall loop gain of the system changes.

H| &0 = Rt | Ry =9.091 V/mA (10.25)
]| —_Bm_ 9901 mA/V (10.26)
Rg—>0 Rfl +RB] .
HK+1(J+CK) |

=-33.76 mV/V (10.27)

Ry—©

T, -
bl 1+BH+I(BC+D)

The loop gain of the system with Rgremoved is therefore -708.5 mV/V.
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R.
——mol 7,605 kQ

in =
1+T,T,
g Ry—o

(10.28)
Another way of finding the input resistance is by noticing in Figure 10.5 that the nodes v;; and v, form a
feedback loop. We can find the closed-loop input resistance of this loop by first finding the open-loop
resistance by zeroing the node v, then dividing that quantity by one plus the loop gain of the loop.

R.

in,ol

o= Ror 1] (B+1)(r + R 1Ry ) I Ry =1.791 K2 (10.29)

Ry I[ (B+1) (71 + Rer 1R, ) [I1 Ry,

1+(BC+D)£1+;HJ

Finally, the results in equation (10.31) are divided by 1 + T, T}, to find the closed-loop input resistance.

=2.217 kQ (10.30)

in,ol —

Ry —0

Similarly, when finding the output resistance, we are faced with a challenge of looking back into a
complicated feedback loop. Because the K path is not cancelled after grounding the error node v;;, the
circuit topology does not exactly match the shunt-feedback amplifier in Figure 9.1, so equation (9.7) will
not help us find the output resistance. However, we have already determined the loop gain of the shunt-
feedback amplifier with O,, which is -E (J + C K). This is apparent in Figure 10.5. To begin, we will
remove the emitter-follower stage from the circuit by letting i,; be 0. The following path gains are
affected by removing the output stage.

Reo |l (Rf + Ry |l ’”el) . Ry I Ry ”(Rf +Rpy |l ”el)

| .= (10.32)
ha =0 Rpy+Reso |l (Rf +Rp |l ”el) Ty T Ry
— E|[,b3_)0 =-13.50 V/V (10.33)
R R R
| = c2llRp2 =558.0 mV/V (10.34)
i Ta+Rpy Ry +7, (| Rpp + Rep [| Ry
_E(BCHD)+F o V/V (10.35)
#li,>0  1+E(J+CK) | .
i, —0

The loop gain of the entire system with the emitter-follower stage removed, T, T, is therefore -

15.63 mV/V, and the loop gain of the feedback amplifier with O, is 16.35 V/V. The open-loop resistance
looking into the node v, with the emitter follower stage removed is therefore given in equation (10.36).
We then find the closed-loop output resistance by dividing by the loop gain T, Ty,

Res |l (Rf +Rpy |l ’”el)||Rf2|
vaz,ol . =

= =103.2 Q
o0 I+E(1+CK) (10.36)

i,;—0
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_ Res ”(Rf +Rpy |l ”e1)||Rf2|
>0 [1+E(J+CK)|(1+7T, T, )

=104.9 Q (10.37)

V,,,cl

i,,—0

Finally, we calculate the output resistance looking into the emitter of the common collector stage after

first removing R;.

Res “(Rf + R ||”el)||Rf2 |
(B+D)[1+E(1+CK)](1+T, T, )

i;—>0

11. Conclusion

In this paper, we discussed various techniques for analyzing feedback circuits. We saw how feedback
theory can apply for simple circuits including only resistive elements as well as more complicated ones
with discrete BJT transistors and multiple feedback paths. We saw what effects the loop gain had on the
input and output resistance of circuits. The core concepts discussed in this paper can be carried further,
and be used to evaluate the stability and bandwidth of circuits with reactive components such as inductors
and capacitors.
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