EE 478 Final Project

Final Report

June 8, 2010

Jonathan Feucht

Whitney James

Abstract

This document describes the prototyping process of a 49-key digital keyboard instrument. This
instrument is intended to be a foundation or reference to create other synthesized instruments. One
could add more keys, velocity sensitive keys, analog sensors as input, or even skip the traditional piano
key all together in favor of something more creative or application specific. This particular keyboard
implementation is equipped with an infrared distance sensor to demonstrate the potential functions
that analog sensors can perform in music composition and performance. An LCD screen and buttons
module is used as a user interface which shows a navigation menu, and is navigated with pushbuttons.
The navigation menu allows the user to change musical settings, such as instrument, reverb, chorus and
volume. The system is designed to be low-power, low-cost, and simple to replicate. The 49-key musical
keyboard consists of an 8x7 button matrix. The microcontroller continually polls the state of the keys,
and outputs key events as MIDI serial commands to the synthesizer. A second microcontroller is
responsible for interfacing with LCD and pushbuttons for musical configuration settings. The result is a
keyboard musical instrument.

Table of Contents

T Ao Yo [V 4T] o U TSNP PROTRTPSPR 2
1Ty o{ U ES1] o T o PP PR 2
RequIremMent SPECITICAtIONS ...ciiiiiie e e et tae e e et ae e e e ta e e e e s teeeesbtaesennraaeeeanes 2
LY 10 PP PP PP PPP PP PPPPP 2

L@ LT o1 1 £ PP P PPPPPPPPPPPPRE 2
USEE INTEITACE ..ttt ettt s e e st e st e e sttt e s e b e e s abe e s beeesbeeesabeesabeesaneeesnreesaneean 2

D LI T g Y o Y=ol Tor= 1 { [o PSPPSR 3
Operating SPECIICAtIONS e e e e e e e e e rre e e e e e e e arr e e e e e e e e eennrrreees 3
Reliability and SAfetY.....uvii i e e e e e e te e e e abae e e eraes 3
Specification of External ENVIFONMENT........ccoiciiiiiiiiie ettt eree e et e e e s srarae s saebae e sraraeeean 3

USE CASES ittt e e e e s e s e s s e s s sarae s 3
System INPULS @Nd OULPULS.......iiiiieiie e e e e e e e e ree e e e e e e s baareeeeeeeessnrrasaeeaseneassnns 3

I3 VA3 =] 0 T 1= of | 1 f o S 4
Hardware IMplemeENnTation ..ot e et e e e et ae e s e te e e e s nbaeeesstaeesettaeeeensaneasanes 6
SOftware IMPlEMENTAtION........eiii e e e e e e e e et e e e e e e e e e sbe e e e eabe e e e earres 9
GV o JoF= e [@Y g o] =Y PSP 9

N LY== L To Y T 2 0= 1 SRS 9

01D 0o [1Y TSP U PP PUS PR 10

RO o T 1= TSR T USRS 12
TESTING N0 MESUILS 1t e e e et e e e e et e e e e et te e e e etaee e s abeeeeesbaeeeanbeeeesaseeeasnnseeesannees 13
] A o =T o= Y o s J RPN 13
=] A o1 = o PSP 13
JLICE = = PP 13
RESUIES ...ttt sttt e bt e s b e e sbe e e sbe e e sh b e e s b ee e ab e e ehe e e shEe e e b e e e eheeeeneeesareeenreenanes 14
NV = =] o o SR 14

[2C SEtEING traNSTEI [ATENCYcveivicvitieeeteeece ettt ettt ettt ettt ettt et eas e eaeereeteerensenseseenenes 14
POWET CONSUMPTION ..ctiiiiiiiiiiiiiiiieieiiieeeireee e ree e e et e e e e teeeseeeeeteeeeeteaeteeeeeteaeeeaeeeeeeeeeaeeeeeseeeeneeeesees 14

U Tg Vot oY o F-1 11 4V 2RSSRt 15
CONCIUSION .ttt ettt et e s bt e e s ae e e st e e s b et e sb e e sabeesaseeesbeeesabeesabeeesseeessreesaneesannas 15
Appendix 1. Bill Of Materialsueiiii it e e e e e et e e e e e e s st b ra e e e e e eeennrrreees 16
APPENAIX 2. SCNEAUIE....eeeeeeeeeeee e e e e e e e e et e e e e e e e ss e astaeeaeaeesaastssaeaeaasesnnsrenees 16

REFEIENCES ..ottt bbb 17

Introduction

For our final project, we took apart a Radio Shack keyboard, reused the mechanical key portion with the
connecting electronics, and replaced the electronics with our own embedded circuit. We made use of
the ATSAM2195 Atmel synthesizer chip in our design, and used an LCD display with a keypad to allow
the user to adjust settings. In this paper, we detail the specifications, design and testing procedure, and
results for our design of this keyboard.

Discussion

Requirement Specifications

This section details the requirements specification for the synthesizer. The system consists of a 49-key
keyboard, a keyboard controller, LCD driver, a serial LCD screen equipped with a 6-button control panel,
and a synthesizer chip. The keyboard is continually polled for key events, and on key changes, MIDI
commands are sent in parallel to the synthesizer chip using standard MIDI messages. The keyboard
controller also outputs MIDI messages at 31,250-baud for use with any serial MIDI device. The LCD
screen communicates with the keyboard controller using 19,200 baud 8-bit RS-232, no parity. The LCD
display consists of 2 rows of 16 characters.

Inputs
A 49-key touch-insensitive keyboard
Six navigation buttons for: Up, Down, Left, Right, Okay, and Cancel

Outputs
LCD screen with navigable menu
e Adjustable volume
e Adjustable reverb / chorus
e Adjustable instrument sound (from library of 128 instruments)
Stereo output for dual 4-ohm 3 watt speakers
MIDI standard output via CBI MIDI cable

User Interface

Menu items used in the hierarchical menu:
% Effects

Reverb

Reverb type

Chorus

Chorus type

Pitch bend (on / off)

Transposition

YV V VY VYV

Volume

O/
0‘0

X3

S

Instrument
Save settings as presets

O/
0‘0

>

R/
*

Restore presets to factory default
The UP and DOWN buttons navigate the menu among items of the same node.

*,

X3

S

3

8

The RIGHT button navigates to the child node associated with the menu item selected.

X3

S

The LEFT button navigates to the parent node.

X3

S

The OKAY button applies the currently selected item in the menu, or navigates to the child node
The CANCEL button returns to the root menu

3

8

Design Specification

Operating Specifications
5V Supply Voltage, maximum power consumption of 2.5 watts

Keyboard controller and synthesizer chip operate off of 3.3 volts, maximum 495 milliwatts

Maximum power consumption by LCD screen with backlight on, audio amplifier, and speakers: 750
milliwatts

Maximum 0.8 ms latency from time of keystroke until time of sound

The Keyboard Controller communicates with the synthesizer using 31,250 baud 8-bit RS-232 with 1 stop
bit, no parity.

The LCD screen communicates with the Keyboard Controller with 19,200 baud 8-bit RS-232 with 1 stop
bit, no parity.

Reliability and Safety
The MTBF will be a minimum of 20,000 hours. The counter shall comply with the following safety
standards:

e UL61010-1

e (SA61010-1

e |EC1010

Specification of External Environment

The keyboard is to operate in a consumer environment in with traditional commercial grade
temperature environment (0 °C to 70 °C). The unit can be powered by USB supplying 5V, maximum 2.5
watts. The operating humidity is 0 to 93%, non-condensing.

Use Cases
The user of this device has three use cases:

e Play keyboard music

e Change instrument sound

e Pitch bend sound by use of infrared optoelectronic distance sensor (D-beam)
e Change volume / chorus / reverb for the instrument

System Inputs and Outputs

Inputs
e Minimum key hold time to trigger a key event is 0.8 milliseconds.
e A pushbutton has to be held down for at most 1 millisecond in order to trigger a navigation
menu event.

Menu allows users to select instrument, and modify volume, chorus, and reverb settings.

Outputs

Signal latency of 0.8 ms latency, with no more than 500 ps jitter.
Sound is played mono on 4Q 3W speakers.

Sound output is supplied on 3.5 mm stereo audio jack.
Navigation menu is displayed on 2x16 character LCD screen.

User Interface

The keyboard has 49 keys, spanning from C2 to C7.

The keyboard is touch insensitive.

A hierarchical menu is displayed on a LCD screen, and is navigated with a 6-button keypad.
The navigation allows the user to select from 128 musical instruments, and modify values for
reverb, chorus, and volume on a scale of 0 to 127.

Included are eight types of reverb and chorus settings.

User could save settings as preset values, or recall factory settings.

System Description
An operator of the system is to interface with the device via a 2x16 character display and pushbuttons to

select musical settings, such as instrument, reverb, chorus and volume. After the operator is satisfied

with their selections they can use the musical keyboard as they would a traditional piano keyboard. The

system will output sound corresponding to the operator’s keyboard playing and the musical setting

made using the LCD and pushbutton interface. In addition to playing the instrument like a traditional

piano keyboard, the user may utilize a “pitch bend” feature, which uses an infrared optoelectronic

distance sensor located above and to the left of the piano keys. With the pitch bend option enabled in

the instrument settings the sensor will respond to hand gestures in the sensors field of view by

modulating the instruments overall pitch.

Screen aulpul—¢

LCD unit with
navigation keys

Menu driver -—HKeypad events

Optoelectronic

e — —Analagq output Keyboard controller PATDH Synthesizer Sound-— Speakers

Kay states

49-key keyboard

Figure 1. Functional decomposition of keyboard

49 Keys, organized as button matrix
with 7 columns, 8 rows

Pitch Bend
N 7 OptcueIrezcyt{;‘::ﬂl;grf1 Device
Column 8
selector Row data
h T
Keyboard controller ™| User Interface > LCD/Keypad
PIC18LF4525 12C ATMEGA328 | RS232 Module
(I*C Slave) - (I’C Master) | CFA-533
-
J
8
Parallel MIDI

Synthesizer

ATSAM2195 Audio Amplifier

Speaker

L

Figure 2. Block diagram of keyboard

Hardware Implementation

The synthesizer utilizes the ATSAM2195 synthesizer chip, mounted on a QFN-44 to DIP-44 mount. A LCD
screen is used as a hierarchical navigation menu for various system options, including volume, reverb,
chorus, and instrument sound. A 49-key touch-insensitive keyboard provides key data to a keyboard
controller, which converts the note information to MIDI standard format, and sends the information in
parallel to the data bus on the synthesizer chip. The keyboard controller also outputs MIDI note
commands using 31,250-baud RS-232.

This synthesizer takes in input from a 49-key keyboard, organized as a button matrix with 8 columns and
7 rows. Each group of seven keys is connected to the same node with a diode, where all the anodes are
connected together. The keys are arranged as a matrix with rows and columns. On the keyboard | got,
the notes are probably grouped by rows of 8, not 16. The keyboard controller polls only one of the rows
of eight keys at a time by asserting high one of the row selector pins. When a row is selected, the values
of the notes on the row will appear on the column pins for the keyboard controller (pins 2-9, and 19-30
in the image). For 49 keys, you need 7 columns of notes to select out the individual row of eight notes
(49 /8 =7, rounded up). Doing the math, 8 rows + 7 columns = 15, which accounts for all the wires in
the ribbon. Our next step was to figure out which wire corresponds to which row or column on the key
matrix, which we did by using a digital multimeter.

Pl
£t

R

B ——1 i Bt] ' ™
o 1 N]
N G o A o 1
—H—/‘l—/ - £ nl_/ - T ‘J—W R
" ——1 £+ 1 Pt 1 f
£t ANy " AN ot -J—'W» R2
P 1 = A] =] A i
Bt ﬁ Bt ‘_]_/ £t ‘J_W\r R3
e L = £ f
e A o] A fot ‘J—‘\NL Rd
1 1 [. AR i
ot .) = - | ot f RS
) i AN T 3| B4 -J—w» ; RT
- 4 J—’v\/\, Re Keyboard Controller
f (PIC18LF4525)
(I*C Slave)
- o
. -

Figure 3. Keyboard schematic

The keyboard controller continuously loops through all the rows of keys and collects data on the state of
all the keys. When one key is noticed to have changed, an on/off key event will be triggered, depending

on the new state of the key. The keyboard controller outputs MIDI commands to the synthesizer chip
when a key value changes via transmitting. These MIDI commands are transmitted to the synthesizer
chip via its parallel input (DO — D7, _CS, RD, WR, and AQ). Figure 4 shows the schematic borrowed
from the ATSAM2195-EK datasheet. This schematic was referenced while wiring the synth chip on a
solderless breadboard. All connections and component values from this schematic were followed
accurately. One exception though is that digital and analog ground planes were NOT separated as
recommended by the schematic. For the purpose of prototyping the circuit this proved adequate.

DIGITAL GROUND PLANE | ANALOG GROUND PLANE
I
I
‘ 220F ¢
[l 2
| AouTL HL CQ%K o 220 S>AUDIO LEFT OUT
]
R3
I
+33V | 5 c22|(_22uF c3 |(10uF %
ATSAM2195 | ACUTR " ; 33K
} c4 ”100er RO
RS ; cs {1 F | > AUDIO RIGHT OUT
I
100k ; VeM cs” |100nF | R4
10 3
MIDI IN 3 MIDI IN ; VBG c7 1/ 10uF | 33k
: 41 +
12 ; YRER T s |[toome |
]t RD | AGNDREF |42
I
1] a0 ! I&JG}‘F—
I
gy : e c10{}100n|:
g [ci1|(uE
25 D5 1 T
D4 |
18 |JE 1 va1s [c12 Hmom:
]7— D2 ! AGND
& p1 | AGND |43 AGND
15] 5o ‘
el e e il e e e i o e g s et A s s e S e o e
26 |
IRQ L) L2 g R6
+i3v 0
RESET/) 2 RESET
po— 21 C13“100nF
29 1 x4 C“i 1uF
X1 . 9.6MHz e el a0 C15 | | 100nF
! X2 o 1o C16 | |100nF
+3.3V 1]
ct c2 outvots 25 C17”470pF
L &1 outLev REGIN Srllaas
T DITHO E“—
22pF 22pF 8 | 39 =
DITH1 PWROUT
) A ct9 |1ODnF |
S _«.ﬁ cooffane 4
22 TEST2 GND (23 POWER DOWN
< TESTA o GND [
TESTO & GND
q
d
of
9

[0)
af

Figure 4. Schematic of example circuit in 3.3 V operation mode (taken from page 17 of ATSAM2195 data sheet)

Pins 1 and 5 (AOUTL and AOUTR respectively) were connected to a 3.5mm headphone jack for the user
to easily connect their personal headphones or an external amplifier. One of these audio output lines
from the synthesizer were also connected to a simple single stage audio amplifier which powered the
original internal speakers that came with the hacked music keyboard. A rough schematic is shown of the
amplifier topology used since the component values are not curtail for this application and only produce
about 4dB amplitude gain anyway. Much more detail can be found by searching the internet for “opamp
amplifier”. This simple amp proved adequate to drive the two internal 4ohm speakers in parallel.

<ir
+\Vce
c1 L
1= R3
cin R1
vin | || N
3 Vout
c2
R2
Vee/2 © =

Figure 5. Schematic for multiple-feedback band-pass amplifier (Texas Instruments)

For user to interface with the device settings and parameters an Arduino microcontroller was used in
conjunction with a Crystalfontz LCD display/buttons module. The user can select parameters which the
Arduino then sends to the Keyboard Controller via the I>C communication protocol and the UART pins
available on both microcontrollers. The Arduino to display/buttons module communication is
accomplished through TTL serial UART interfaces available on both devices. Power to the entire system
is conveniently provided by the Arduino microcontroller board. A variant of the Arduino was used called
the Seeeduino. The Seeeduino is completely compatible with the Arduino development environment
and hardware peripherals (Shields). The added advantage the Seeeduino provided is its ability to
operate on 3.3V logic. This makes it easy interface with external 3.3V devices. The 3.3V devices in this
keyboard system consist of the PIC18 Microcontroller, ATMEL synthesizer chip, LCD/Buttons module,
and the Seeeduino. Since the Seeeduino has its own on-board 5V and 3.3V dedicated voltage regulators,
powering the rest of the circuit was convenient and organized.

One of the challenging aspects of this project was interfacing with the ATMEL synthesizer chip. The chip
is very powerful and provides much of the keyboard systems functionality and it is relatively
inexpensive. However, it only comes in a QFN package which makes it a surface-mount component only.
Generally requires expensive equipment to reflow solder and fabrication of a custom PCB. These two
requirements were far beyond the scope and time constraint of this project, so alternatives were found.
First, a QFN breakout board kit was purchased from protovantage.com. This provided all the necessary
supplies needed to reflow solder the synthesizer chip onto a breadboard compatible breakout board.
The other hurdle was how to reflow the solder without access to an expensive reflow oven. A $30
electric skillet was purchased from Target and proved to work very well. Simply stencil the solder paste,
place the synthesizer chip on the pasted pads, and stick it in the skillet until the solder paste turns shiny
and has flowed to cover the pads completely. More information on this process can be found by
searching the internet for “skillet reflow solder”.

Software Implementation

Keyboard Controller

Messages are sent to the ATSAM?2195 chip in parallel mode for this application. When the keyboard
controller boots up, the ATSAM2195 chip is initialized in parallel mode by sending the value Ox3F as a
control message (A0 = 1). Our boot method continually sends this value to the chip, until the IRQ pin on
the synthesizer chip goes high, indicating a byte is available on the synthesizer chip for read. A byte is
then read from the synthesizer chip as a data message (A0 = 0). If the returned byte equals OxFE, then
the synthesizer chip was successfully initialized in parallel mode. Also during the boot procedure for the
keyboard controller, the pitch bend optoelectronic sensor is calibrated by taking one distance
measurement. When pitch bend is enabled on the keyboard, pitch bend messages are continually sent
to the synthesizer chip based on distance measurements taken from the sensor.

The keyboard controller driver loops through each column pin on the key matrix asserting it high. The
row pins are then read into the microcontroller. After the states of all buttons on the keyboard are read
into the system, the button states are compared to previous button states. The keyboard controller then
checks for changes to the buttons, and sends out MIDI NOTE ON/NOTE OFF messages to the synthesizer
chip as data messages (A0 = 0). All NOTE ON/NOTE OFF messages are also transmitted on the PIC TX
port at 31250 baud 8-bit no parity, for use with other serial MIDI devices. This feature makes our project
a suitable keyboard interface compatible with Russell, Daniel, and Torin’s synthesizer project.

Table 1. MIDI messages used in the keyboard controller

Type Hex code Description

Control | 3F Puts the ATSAM2195 chip in Parallel message mode.

Data BO 7B 00 Clear all key events.

Data BO 65 00 64 00 06 xx Change the pitch bend sensitivity to xx.

Data EO 00 xx Change the pitch bend value to xx.

Data 90 xx yy NOTE ON/NOTE OFF command. The value xx represents the key

index, and yy represents the key velocity. Setting yy = 00 represents
a NOTE OFF event.

Data CO xx Change the instrument. The value xx represents the instrument
number.

Navigation menu
The navigation menu uses a tree-like data structure for navigating various settings. The data type used
for the navigation menu is defined as follows:

typedef struct menu t {

unsigned char menu_cnt;
unsigned char* setting val ptr;
Boolean inverse order;
setting t setting idx;

const prog char** menu items;
const prog char* label;

struct menu t* parent;
struct menu t** children;
} menu;

The purposes of the various struct elements are as follows:

Menu type element

Description

menu_cnt

Indicates how many menu items are assigned to the menu struct

setting_val_ptr

Stores the location where the setting value is stored in memory

inverse_order

If true, the function of the UP and DOWN buttons is swapped

setting_idx Index describing the specific setting

menu_items An array of strings stored in program memory

label A string stored in program memory which is displayed before each menu item
parent A pointer to the parent node for the menu struct

children An array of pointers to children menu structs

During initialization of the Seeeduino module, the menu tree structure is set up. Two global menu

pointers point to the root menu node (Main Menu) and the current menu node being navigated to. The

menu tree is navigated using the keypad on the Crystalfontz CFA-533 LCD.

Figure 6. Menu tree structure

LCD driver

Main Menu >
Sound settings — " \Sj{;z:iMenu .__jf(> Iaevel B
Instrument — Reverb .| 1
Set as default Reverb type = " P
Reset defaults Chorus = J
P Chorus type [~\ . 126
Instrument Menu Pitch bend ——T | |Ritch bend menu 127
1 Grand Piano 1 Transposition o— On
2 Bright Piano 2 Octave offset ? 1 Off
3 Electric Grand Piano J
)
127 Applause «— — | N
128 Gunshot Chorus type menu Reverb type menu Transposition menu
Chorus 1 Room 1 -12
Chorus 2 Room 2 -11
Octave offset menu Chorus 3 Room 3 =19
=9 Chorus 4 Hall 1
1 Feedback Hall 2 10
0 Flanger Plate 11
1 Short delay Delay 12
2 FB delay Pan delay

The Crystalfontz CFA-533 LCD / keypad unit is used for displaying and navigating through the menu. The

Seeeduino sends and receives information in “packets” from and to the LCD using serial 19200 baud RS-

232. Each packet contains the following information:

= 1-byte Com

mand

= 1-byte Data Length (0 —22)

= Data

= CRC checksum of all previous bytes in the packet

The following LCD commands were used in our project:

Sent package (hex) | Returned package (hex) | Description

07 10 AA.. 47 00 Print 16 characters (AA...) to first row of LCD
08 10 AA... 48 00 Print 16 characters (AA...) to second row of LCD
17 02 00 00 5700 Disable automatic button reporting.

18 00 58 03 AABB CC Read keypad, polled mode.

AA = Keys currently held down.
BB = Keys pressed since last poll.

CC = Keys released since last poll.

Commands sent to the LCD range from 0x00 to Ox3F. Return packets from LCD range from 0x40 to Ox7F
for normal response, and from 0xCO to OxFF for error. Hex codes from 0x80 to OxBF are response codes
for reports which are not indirect responses to commands sent to the screen.

We found that even though an outgoing command is sent, the probability the command would succeed
was around 30%. We wrote our LCD driver to continue attempting to send a packet until it receives the
response code for the command sent (command | 0x40), which ensures that all commands are
executed.

During initialization, the LCD displays a startup screen, and then displays the main menu. The user then
navigates the menu using the buttons on the LCD keypad. The keypad buttons perform the following
functions:

Keypad button Function

Up Navigate up or down the menu items for the current menu node, depending on the
value of reverse_order

Down Navigate down or up the menu items for the current menu node, depending on the
value of reverse_order

Left Navigate to the current menu node’s parent

Right Navigate to the child of the current menu node

Okay Execute current command / set current setting / navigate to child of the current
menu node

Cancel Navigate to the root node (Main Menu)

The key data is polled once every millisecond. We found that the polled key data coming from the
keypad was full of glitches, requiring some sort of debouncing technique to make the data usable.
Shows an example of the key data returned from the LCD when no buttons are pressed down.

& Serial Input/Output Monitor B@

File Edit Yiew Configuration Contrallines Macro Manager

A1A1A1A0 A1A110600 ABARAEAEA ~
ARRRARRA 11111008 AAARAAAR
A1A1A1A0 AARAERER BRARAEAA
11160 AR110161 ARARAEAA
A1A1A1A0 AERAER11 ARARAEAA
119160 AA1160161 ABARAEAA
A1A10100 PA110161 AAAAAAAR
118160 A1A11°A608 ARARAAAA
A1A1P1A0 A1011°9608 ABA16116
ARRPAARR 11111008 AAAAAAAR
A1A1A1A0 AARAARER ARARAEAA
A1A10100 ARRAAAAA AAARAAAR
A1A1A1A0 AAREARER ARARAEAA
AARAAAAE 111110608 ARARAEAA
ARRRARAR 11111008 AAARAAAR
ARARARAEE 111110608 ARARAEAA
A1A1P1A0 AEREARER ARA16116
AARARAEE 111110608 ARARAOAA
A1A1A1A0 ARREARER ARARAEAA
ARRRANAR 11111000 AAAAAAAR
A1A1A1A0 AARAARER ARARAEAA
119100 ARRAARER ARARAEAEA
A1A18100 A1011008 AEARAAAR
A1A1A1A0 ARREARER BRE16116
APRRERAR 111110060 060080
110160 ARRAARER ARRRAEAA
11160 A1A11°A608 ARARAEAA
A1A18100 A1011008 AAARAAAR
11160 A1011°A60° ABRARAEAA
119160 AEREARER ARA16116
ARARARAAE 1111190608 ARARAEAA
110160 ARRAARER ARRRAEAA
A1A10100 P1011008 AAAAAAAR
A1A1A1A0 A1A11°A608 ARARAEAA
AARAAAAE 111119608 ARARAEAEA
ARRRAEARE 11111008 AAARAAAR
A1PA1P1AA 111110608 ARABAOAA

Buttons Buttons Buttons
pressed released held

Figure 7. Example of bad key data from LCD unit when no actual buttons are pressed down

The data for the buttons held was the cleanest and most usable. We implemented a debouncing
technique which made sure that any errant 1’s and 0’s are filtered out from generating button events.
To do this, we count all the read button states during a period of 15 keypad polls. We determined that if
the count was greater than 3, a key press event would be generated, after which no new key events can
be generated for 1 second. If the count was greater than 10, a key hold event would be generated, after
which no new key events could be generated for 1 millisecond unless the button is released and pushed
again. The resulting functionality allows you to push the button down and navigate through the menus
slowly, or hold the key down and scroll faster through the menus.

When the user selects the Enter key, the LCD driver checks the setting_val_ptr field for the current
menu node. If the pointer is anything other than null (0), it changes the setting for the current menu
node to the current menu item index, displays a success message, transmits the setting over to the
Keyboard Controller over the 12C bus, and exits. Menus that change settings include the Level Menu,
Pitch Bend Menu, Transposition Menu, and others (see Figure 6). If the setting_val_ptr field for the
current menu node is a null pointer, the current menu node does not modify a setting. In that case, the
LCD driver then checks if there is a child node for the current menu item. If not, then the selection is
processed as a command. The menu items “Set as default” and “Reset defaults” are two examples of
commands in our navigational menu (see Figure 6). If there is a child node for the current menu item,
the LCD driver simply navigates to the child node, same as the Right button on the keypad.

12C driver

When a setting is modified through the navigational menu, the setting index and value are transmitted
over the 12C bus to the keyboard controller. After the setting and value are transmitted, the driver looks
for a success message from the Keyboard Controller, signaling that the setting was successfully read.

The standard Wire.h library which is included in the Arduino environment was not generating necessary
interrupts in the PIC controller. To fix this, we developed our own I2C drivers, which bit-banged the SCL
and SDA outputs.

Testing and results

Test Specification

Overall testing of the system includes testing overall functionality, as well as testing several system
restraints. The functionality testing includes smooth operation of the LCD navigational menu, verifying
that settings made in the menu change the sound output, and verifying that all necessary key events are
generated from the keyboard.

Maximum key latency: 0.8 milliseconds
Maximum [2C setting transfer time: 0.5 seconds
Maximum power consumption by Keyboard Controller and Synthesizer: 495 milliwatts

el R

Maximum power consumption by LCD screen with backlight on, audio amplifier, and speakers:
750 milliwatts
5. Maximum power consumption for entire system: 2.5 watts

Test plan

Overall functionality of our circuit is verified by operation of the keyboard and navigation menu. The key
latency is measured by measuring the total time to poll all key positions, as well as sending MIDI events
for each of the 49 keys to the synthesizer chip. This is measured by altering the keyboard controller code
so it runs the keyboard driver in a continuous loop and outputs all 49 key events, then probing one of
the column pins on the PIC processor on the oscilloscope. The period of the frequency measured is the
worst-case key latency for the keyboard.

The minimum transfer time of settings from the Seeeduino to the PIC controller is measured in a similar
fashion. The transfer time was measured from the transmission of the first setting from the Seeeduino
until the time the PIC transmits back the success code.

Power consumption is measured for each individual unit on the keyboard using a digital multimeter. This
is divided into four distinct measurements: 1) Amplifier and speaker, 2) Keyboard controller and
synthesizer chip, 3) LCD display, and 4) Seeeduino.

Test Cases

To measure key latency, we tested for the worst possible case of all 49 keys changing value at the same
time, which was our theoretical (although perhaps physically impossible) worst-case delay for the
keyboard controller.

The I12C transfer time includes sending two bytes of data, and receiving the success message back.

Power consumption by the amplifier is measured by pressing several keys at once at maximum volume
on a fairly loud instrument. Power consumption by the LCD module is measured with the backlight on.

Results

Key latency

Tek FEH 2M5/s 19 Acqgs

=

T3
T

r : ! 1a: 211.0ps
! : : . : : J@: ~500ns

Ch1 ampl
3.28V

4 Ch1 Pk-Pk
y 3.32V

Ch1 Max
3.32v

Ch1 Freq
4.494kHz

AT soomv T W 3sps ChT 4 2.54V

Figure 8. The total worst-case key latency was measured to be 211 ps, which far exceeds our project specification of 800 us
minimum.

I2C setting transfer latency
Tek SITEB 2kS/s 9 Acqs
F--F
rr I H
L T T Az 17oms
w : : : {@: 178.5ms

Ch1 ampl
3.18V

1 Ch1 Pk-Pk
y 3.24V

+ chi Max
1 322V

Ch1 Freq
3.57 Hz

W S00mv T T M 25ms CRT o 1.64V

Figure 9. The total worst-case I12C setting transfer latency was measured to be 179 ms.

Power consumption
Table 2. Measured power consumption of various circuit components

Circuit component Peak power consumption
Keyboard Controller (PIC) / ATMEL synthesizer chip 0.216 watts

Speakers / audio amplifier 0.200 watts

LCD display with backlight 0.505 watts

Seeduino board 0.279 watts

Total power consumption 1.20 watts

As shown in Table 2, our circuit met the specification of a maximum power consumption of 2.5 watts.

Functionality
After playing the keyboard, we were able to verify that the keyboard generated appropriate MIDI
messages based off key events. Changed settings successfully were applied, and the navigation menu

worked as specified.

Conclusion

Using an inexpensive used music keyboard as a basis, a more versatile keyboard was created. Using
primarily common and accessible components allows for this project to be used as a foundation for
other digitally synthesized instruments to be created. Keeping the design fundamentally simple and easy
to replicate was achieved by utilizing serial communication busses as much as possible. An example of
using serial communication where parallel would have been more common for this type of project was
the use of the LCD/Buttons module. Furthermore, use of the powerful ATMEL synthesizer chip provides
the user with extensive customization and creative potential.

Appendix 1. Bill of materials

Count Part Number Description Cost ea. (U.S. Dollars)
1 ATSAM2195 Atmel synthesizer chip 6.00
1 PIC18F4550 PIC microcontroller 6.00
1 ATMEGA328P Atmel microcontroller 5.00
1 CFA533-YYH-KC Crystalfontz 2x16 character R$232 LCD 50.00
with 6-buttons
1 MD-500, Radio Shack | Dismantled keyboard 20.00
1 Audio jack 1.00
1 9.6 MHz crystal 2.40
1 20 MHz oscillator 2.40
1 470 pF ceramic capacitor 0.20
9 100 nF ceramic capacitor 0.20
4 1 uF electrolytic capacitor 0.30
3 2.2 uF electrolytic capacitor 0.30
1 4.7 uF electrolytic capacitor 0.30
2 10 uF electrolytic capacitor 0.30
2 10 Q resistor, 5%, ¥ watt 0.10
1 100 kQ resistor, 5%, % watt 0.10
Total: | 98.20
Appendix 2. Schedule
May 9, 2010 May 16, 2010 May 23, 2010 May 20, 2010 Jun B, 20110

[M[TTW]TF[S[S[M[TW][T]F[S[S[M[TW[T[F[S[S[M[TW[T[F[S[S[M[TW][T][F[S[SM[T]

. GO

I [esign specification

B Order Components

I F'reliminary Design Heview Deliverables
B Determine keyvhoard wiring interface
. rite keyboard driver software

B Freliminary Design Heview

Interface ATMEL synth chip

I rite LCD drivers
I Final Design Review Deliverables

B Final Design Review

B Proect Presentations In Class
B Froject Demo
Em Final Report

References
ATSAM2195 Low-power Single Chip Synthesizer with Effects, ATMEL, May 2007.
http://www.atmel.com/dyn/products/product card.asp?part id=4142

ATSAM2195 User Guide, ATMEL, June 2007.
http://www.atmel.com/dyn/products/product card.asp?part id=4142

Carter, Bruce, A Single-Supply Op-Amp Circuit Collection, Texas Instruments, November 2000.
http://www.ti.com/sc/docs/psheets/abstract/apps/sloa058.htm

Intelligent Serial LCD Module Specifications, Crystalfontz, Revision 1.1, June 2009.
http://www.crystalfontz.com/product/CFA533-YYH-KS.html

